A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microbial electroactive biofilms dominated by Geoalkalibacter spp. from a highly saline-alkaline environment. | LitMetric

Microbial electroactive biofilms dominated by Geoalkalibacter spp. from a highly saline-alkaline environment.

NPJ Biofilms Microbiomes

Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Knowledge City, Sector 81, SAS Nagar, Punjab, 140306, India.

Published: October 2020

Understanding of the extreme microorganisms that possess extracellular electron transfer (EET) capabilities is pivotal to advance electromicrobiology discipline and to develop niche-specific microbial electrochemistry-driven biotechnologies. Here, we report on the microbial electroactive biofilms (EABs) possessing the outward EET capabilities from a haloalkaline environment of the Lonar lake. We used the electrochemical cultivation approach to enrich haloalkaliphilic EABs under 9.5 pH and 20 g/L salinity conditions. The electrodes controlled at 0.2 V vs. Ag/AgCl yielded the best-performing biofilms in terms of maximum bioelectrocatalytic current densities of 548 ± 23 and 437 ± 17 µA/cm with acetate and lactate substrates, respectively. Electrochemical characterization of biofilms revealed the presence of two putative redox-active moieties with the mean formal potentials of 0.183 and 0.333 V vs. Ag/AgCl, which represent the highest values reported to date for the EABs. 16S-rRNA amplicon sequencing of EABs revealed the dominance of unknown Geoalkalibacter sp. at ~80% abundance. Further investigations on the haloalkaliphilic EABs possessing EET components with high formal potentials might offer interesting research prospects in electromicrobiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555509PMC
http://dx.doi.org/10.1038/s41522-020-00147-7DOI Listing

Publication Analysis

Top Keywords

microbial electroactive
8
electroactive biofilms
8
eet capabilities
8
eabs possessing
8
haloalkaliphilic eabs
8
formal potentials
8
eabs
5
biofilms
4
biofilms dominated
4
dominated geoalkalibacter
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!