Background: We aimed to estimate the diagnostic accuracy of the VitalScan magnetocardiograph (MCG) for suspected acute coronary syndrome (ACS).

Methods: We undertook a prospective cohort study evaluating the diagnostic accuracy of the MCG in adults with suspected ACS. The reference standard of ACS was determined by an independent adjudication committee based on 30-day investigations and events. The cohort was split into a training sample, to derive the MCG algorithm and an algorithm combining MCG with a modified Manchester Acute Coronary Syndrome (MACS) clinical probability score, and a validation sample, to estimate diagnostic accuracy.

Results: We recruited 756 participants and analysed data from 680 (293 training, 387 validation), of whom 96 (14%) had ACS. In the training sample, the respective area under the receiver operating characteristic (AUROC) curves were the following: MCG 0.66 (95% CI 0.58 to 0.74), MACS 0.64 (95% CI 0.54 to 0.73) and MCG+MACS 0.70 (95% CI 0.63 to 0.77). MCG specificity was 0.16 (95% CI 0.12 to 0.21) at the threshold achieving acceptable sensitivity for rule-out (>0.98). In the validation sample (n=387), the respective AUROCs were the following: MCG 0.56 (95% CI 0.48 to 0.64), MACS 0.69 (95% CI 0.61 to 0.77) and MCG+MACS 0.64 (95% CI 0.56 to 0.72). MCG sensitivity was 0.89 (95% CI 0.77 to 0.95) and specificity 0.15 (95% CI 0.12 to 0.20) at the rule-out threshold. MCG+MACS sensitivity was 0.85 (95% CI 0.73 to 0.92) and specificity 0.30 (95% CI 0.25 to 0.35).

Conclusion: The VitalScan MCG is currently unable to accurately rule out ACS and is not yet ready for use in clinical practice. Further developmental research is required.

Download full-text PDF

Source
http://dx.doi.org/10.1136/emermed-2020-210396DOI Listing

Publication Analysis

Top Keywords

diagnostic accuracy
12
acute coronary
12
coronary syndrome
12
95%
11
mcg
9
suspected acute
8
estimate diagnostic
8
training sample
8
validation sample
8
064 95%
8

Similar Publications

Background: Recent technological advances have introduced novel methods for measuring body composition, each with unique benefits and limitations. The choice of method often depends on the trade-offs between accuracy, cost, participant burden, and the ability to measure specific body composition compartments.

Objective: To review the considerations of cost, accuracy, portability, and participant burden in reference and emerging body composition assessment methods, and to evaluate their clinical applicability.

View Article and Find Full Text PDF

Automatic 4D mitral valve segmentation from transesophageal echocardiography: a semi-supervised learning approach.

Med Biol Eng Comput

January 2025

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.

Performing automatic and standardized 4D TEE segmentation and mitral valve analysis is challenging due to the limitations of echocardiography and the scarcity of manually annotated 4D images. This work proposes a semi-supervised training strategy using pseudo labelling for MV segmentation in 4D TEE; it employs a Teacher-Student framework to ensure reliable pseudo-label generation. 120 4D TEE recordings from 60 candidates for MV repair are used.

View Article and Find Full Text PDF

Lung cancer is one of the major causes of cancer morbidity and mortality. Subtyping of non-small cell lung cancer is necessary owing to different treatment options. This study is to evaluate the value of immunohistochemical expression of glypican-1 in the diagnosis of lung squamous cell carcinoma (SCC).

View Article and Find Full Text PDF

Purpose: This case report aims to present a rare case of endometrial carcinosarcoma, a highly malignant tumor with a poor prognosis. The primary objective is to describe this unique case's clinical presentation, multimodal magnetic resonance imaging (MRI) features, typical histopathological characteristics and surgical treatment.

Methods: A detailed analysis of the patient's medical history, preoperative imaging evaluation, and treatment approach was conducted.

View Article and Find Full Text PDF

Rapid Determination of Organic and Inorganic Selenium in Poultry Tissues by Internal Extractive Electrospray Ionization Mass Spectrometry.

Anal Chem

January 2025

The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China.

An online reactive internal extraction electrospray ionization (iEESI) method was developed for the rapid determination of organic and inorganic speciation information for selenium in poultry tissue samples without complex sample pretreatment. The addition of citric acid as a reducing agent to the internal extraction solvent of methanol/acetic acid (99:1, V/V) for iEESI resulted in the reduction of selenate in the sample to selenite, accompanied by the production of malic acid as an oxidation product. The quantitative analysis of selenate was conducted by using malic acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!