Background: A family of genes designated as the Zinc finger A20/AN1 Transcription factors encoding stress-associated proteins (SAP) are well described in Arabidopsis and rice, and include 14 AtSAP and 18 OsSAP genes that are associated with variable tolerances to multiple abiotic stresses. The SAP gene family displays a great diversity in its structure and across different plant species. The aim of this study was to identify all HvSAP genes in barley (Hordeum vulgare L.), to analyse the expression of selected genes in response to salinity in barley leaves and develop SNP marker for HvSAP12 to evaluate the association between genotypes of barley plants and their grain yield in field trials.

Results: In our study, 17 HvSAP genes were identified in barley, which were strongly homologous to rice genes. Five genes, HvSAP5, HvSAP6, HvSAP11, HvSAP12 and HvSAP15, were found to be highly expressed in leaves of barley plants in response to salt stress in hydroponics compared to controls, using both semi-quantitative RT-PCR and qPCR analyses. The Amplifluor-like SNP marker KATU-B30 was developed and used for HvSAP12 genotyping. A strong association (R = 0.85) was found between KATU-B30 and grain yield production per plant of 50 F breeding lines originating from the cross Granal × Baisheshek in field trials with drought and low to moderate salinity in Northern and Central Kazakhstan.

Conclusions: A group of HvSAP genes, and HvSAP12 in particular, play an important role in the tolerance of barley plants to salinity and drought, and is associated with higher grain yield in field trials. Marker-assisted selection with SNP marker KATU-B30 can be applied in barley breeding to improve grain yield production under conditions of abiotic stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7556924PMC
http://dx.doi.org/10.1186/s12870-020-02332-4DOI Listing

Publication Analysis

Top Keywords

grain yield
16
hvsap genes
12
snp marker
12
barley plants
12
genes
9
zinc finger
8
finger a20/an1
8
barley
8
yield field
8
marker katu-b30
8

Similar Publications

The Effect of Antisolvent Treatment on the Growth of 2D/3D Tin Perovskite Films for Solar Cells.

ACS Energy Lett

January 2025

Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.

Antisolvent treatment is used in the fabrication of perovskite films to control grain growth during spin coating. We study widely incorporated aromatic hydrocarbons and aprotic ethers, discussing the origin of their performance differences in 2D/3D Sn perovskite (PEAFASnI) solar cells. Among the antisolvents that we screen, diisopropyl ether yields the highest power conversion efficiency in solar cells.

View Article and Find Full Text PDF

Chromosome-level genome assembly and annotation of largemouth bronze gudgeon (Coreius guichenoti).

Sci Data

January 2025

Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.

Coreius guichenoti, mainly distributed in upstream regions of the Yangtze River China, is currently on the brink of extinction and listed as national secondary protected animal. In this study, we aimed to obtain the chromosome-level genome of C. guichenoti using PacBio and Hi-C techniques.

View Article and Find Full Text PDF

Amaranth is a pre-Columbian staple crop used as a nutritious gluten-free grain associated with several health properties. Instant Controlled Pressure Drop (DIC) is an emerging technology used in many food industries. This study evaluates the effect of DIC treatment on amaranth.

View Article and Find Full Text PDF

Wheat and barley serve as significant nutrient-rich staples that are extensively grown on a global scale, spanning over 219 million hectares. The annual combined global yield is 760.9 million tons, with Kazakhstan contributing 14.

View Article and Find Full Text PDF

The NAT1-bHLH110-CER1/CER1L module regulates heat stress tolerance in rice.

Nat Genet

January 2025

State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China.

Rice production is facing substantial threats from global warming associated with extreme temperatures. Here we report that modifying a heat stress-induced negative regulator, a negative regulator of thermotolerance 1 (NAT1), increases wax deposition and enhances thermotolerance in rice. We demonstrated that the C2H2 family transcription factor NAT1 directly inhibits bHLH110 expression, and bHLH110 directly promotes the expression of wax biosynthetic genes CER1/CER1L under heat stress conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!