The epithelial-mesenchymal transition (EMT) is a cellular programme on which epithelial cells undergo a phenotypic transition to mesenchymal ones acquiring metastatic properties such as mobility and invasion. TGF-β signalling can promote the EMT process. However, the dynamics of the concentration response of TGF-β-induced EMT is not well explained. In this work, we propose a logical model of TGF-β dose dependence of EMT in MCF10A breast cells. The model outcomes agree with experimentally observed phenotypes for the wild-type and perturbed/mutated cases. As important findings of the model, it predicts the coexistence of more than one hybrid state and that the circuit between TWIST1 and miR-129 is involved in their stabilization. Thus, miR-129 should be considered as a phenotypic stability factor. The circuit TWIST1/miR-129 associates with ZEB1-mediated circuits involving miRNAs 200, 1199, 340, and the protein GRHL2 to stabilize the hybrid state. Additionally, we found a possible new autocrine mechanism composed of the circuit involving TGF-β, miR-200, and SNAIL1 that contributes to the stabilization of the mesenchymal state. Therefore, our work can extend our comprehension of TGF-β-induced EMT in MCF10A cells to potentially improve the strategies for breast cancer treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7653381 | PMC |
http://dx.doi.org/10.1098/rsif.2020.0693 | DOI Listing |
BMC Plant Biol
January 2025
Field Crops Research Institute, Agricultural Research Center, Giza, 12619, Egypt.
Studying genetic variability through the phenotypic performance of genotypes is crucial in the breeding program. Therefore, evaluating both yield performance and stability across diverse environments is essential in yield trials to identify high-yield potential and stable cultivars. In this study, we employed 12 univariate and 10 multivariate stability models to analyze how genotype (G), environment (E), and their interaction (G × E) affect the yield performance of 32 barley genotypes across 10 environments.
View Article and Find Full Text PDFBMC Ecol Evol
January 2025
National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, 560065, India.
Background: Trait variation is shaped by functional roles of traits and the strength and direction of selection acting on the traits. We hypothesized that in butterflies, sexually selected colouration is more variable owing to condition-dependent nature and directional selection on sexual ornaments, whereas naturally selected colouration may be less variable because of stabilising selection. We measured reflectance spectra, and extracted colour parameters, to compare the amount of variation in sexually versus naturally selected colour patches across wing surfaces and sexes of 20 butterfly species across 4 families (Nymphalidae, Papilionidae, Pieridae, Lycaenidae).
View Article and Find Full Text PDFJ Biotechnol
January 2025
Johns Hopkins Biomedical Engineering; Johns Hopkins University Department of Molecular Biology and Genetics, Baltimore, Maryland, USA; Johns Hopkins University Department of Medicine, Division of Infectious Disease, Baltimore, Maryland, USA. Electronic address:
Chinese Hamster Ovary (CHO) cells produce monoclonal antibodies and other biotherapeutics at industrial scale. Despite their ubiquitous nature in the biopharmaceutical industry, little is known about the behaviors of individual transfected clonal CHO cells. Most CHO cells are assessed on their stability, their ability to produce the protein of interest over time.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia 46022, Spain.
The SWItch/Sucrose Non-Fermenting (SWI/SNF) complexes are evolutionarily conserved, ATP-dependent chromatin remodelers crucial for multiple nuclear functions in eukaryotes. Recently, plant BCL-DOMAIN HOMOLOG (BDH) proteins were identified as shared subunits of all plant SWI/SNF complexes, significantly impacting chromatin accessibility and various developmental processes in Arabidopsis. In this study, we performed a comprehensive characterization of mutants, revealing the role of BDH in hypocotyl cell elongation.
View Article and Find Full Text PDFJ Evol Biol
January 2025
Laboratorio de Ecotono, Instituto de Investigaciones em Biodiversidad y Medioambiente (INIBIOMA), CONICET- Universidad Nacional del Comahue, San Carlos de Bariloche, Río Negro, Argentina.
Modularity and developmental (in)stability have the potential to influence phenotype production and, consequently, the evolutionary trajectories of species. Depending on the environmental factors involved and the buffering capacity of an organism, different developmental outcomes are expected. Cactophilic Drosophila species provide an established eco-evolutionary model with well-studied ecological conditions, making them ideal for studying these phenomena.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!