A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-Performance Ultrafast Humidity Sensor Based on Microknot Resonator-Assisted Mach-Zehnder for Monitoring Human Breath. | LitMetric

High-Performance Ultrafast Humidity Sensor Based on Microknot Resonator-Assisted Mach-Zehnder for Monitoring Human Breath.

ACS Sens

Key Laboratory of In-fiber Integrated Optics of the Ministry of Education, College of Science, Harbin Engineering University, Harbin 150001, China.

Published: November 2020

Monitoring the dynamic humidity requires sensors with fast response and anti-electromagnetic interference, especially for human respiration. Here, an ultrafast fiber-optic breath sensor based on the humidity-sensitive characteristics of gelatin film is proposed and experimentally demonstrated. The sensor consists of a microknot resonator superimposed on a Mach-Zehnder (MZ) interferometer produced by a tapered single-mode fiber, which has an ultrafast response (84 ms) and recovery time (29 ms) and a large dynamic transmission range. The humidity in dynamic ambient causes changes in the refractive index of gelatin coating, which could trigger spectral intensity transients that can be explicitly distinguished between the two states. The sensing principle is analyzed using the traditional transfer-matrix analysis method. The influence of coating thickness on the sensor's trigger threshold is further investigated. Experiments on monitoring breath patterns indicate that the proposed breath sensor has high repeatability, reliability, and validity, which enable many other potential applications such as food processing, health monitoring, and other biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.0c00863DOI Listing

Publication Analysis

Top Keywords

sensor based
8
breath sensor
8
high-performance ultrafast
4
ultrafast humidity
4
sensor
4
humidity sensor
4
based microknot
4
microknot resonator-assisted
4
resonator-assisted mach-zehnder
4
monitoring
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!