Excess phosphorus (P) accumulation in the soil can change the bioavailability of P and increase the leaching risks, but the quantitative evaluation of these responses in acidic red soil is lacking. This study aimed to investigate the composition of soil P fractions under different phosphorus apparent balances (PAB) in acidic red soil and the bioavailability and the leaching change-points of different P fractions. Five phosphorus (P) fertilization rates were applied (0, 16.38, 32.75, 65.50, 131.00 kg P·ha) in every sweet corn cultivation from the field experiment, and the treatments were marked as P0, P1, P2, P3, and P4, respectively. The PAB showed negative values in P0 and P1 which were -49.0 and -15.0 kg P·ha in two years, respectively. In contrast, PAB in P2 as well as in P3 and P4 were positive, the content ranging from 40.2 to 424.3 kg P·ha in two years. Per 100 kg ha P accumulate in the soil, the total P increased by 44.36 and 10.41 mg kg in the surface (0-20 cm) and subsurface (20-40 cm) soil, respectively. The content of inorganic P fractions, including solution phosphate (Sol-P), aluminum phosphate (Al-P), iron phosphate (Fe-P), reduction phosphate (Red-P), and calcium phosphate (Ca-P), significantly increased by 0.25, 16.22, 22.08, 2.04, and 5.08 mg kg, respectively, in surface soil per 100 kg ha P accumulated in the soil. Path analysis showed that the most important soil P fractions contributing to Olsen-P were Sol-P and Al-P, which can directly affect Olsen-P, and their coefficients were 0.24 and 0.73, respectively. Furthermore, the incubation experiments were conducted in the laboratory to investigate the leaching risk of different P fractions, and they showed Sol-P was a potential source of leaching, and the leaching change-points of Al-P and Fe-P were 74.70 and 78.34 mg·kg, respectively. Continuous P that accumulated in soil changed the composition of P fractions, and the bioavailability as well as the leaching risks increased. This is important in optimizing soil P fertilization management in agricultural ecosystems based on the bioavailability and critical levels for leaching of P fractions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599965 | PMC |
http://dx.doi.org/10.3390/ijerph17207384 | DOI Listing |
Environ Monit Assess
January 2025
Department of Natural Resource Management, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia.
Assessing the impacts of forest cover change on carbon stock and soil moisture dynamics is critical for understanding environmental degradation and guiding sustainable land management. This study evaluates the effects of forest cover change on carbon stock and soil moisture dynamics in Nensebo Forest from 1993 to 2023 using geospatial techniques. Landsat imagery including TM (1993), ETM + (2009), and OLI/TIRS (2023) were used.
View Article and Find Full Text PDFInt J Biometeorol
January 2025
Laboratorio de Zoología, Departamento de Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, Av. Patria 1201, Zapopan, 45129, México.
In Mexico, Neospora caninum and Toxoplasma gondii are major causes of reproductive problems in sheep. Understanding the environmental factors that influence the spread of these parasites is crucial for developing effective control strategies. The objective of this study was to identify the environmental factors associated with N.
View Article and Find Full Text PDFProtoplasma
January 2025
Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India.
Stay-green (SG) and stem reserve mobilization (SRM) are two significant mutually exclusive traits, which contributes to grain-filling during drought and heat stress in wheat. The current research was conducted in a genome-wide association study (GWAS) panel consisting of 278 wheat genotypes of advanced breeding lines to find the markers linked with SG and SRM traits and also to screen the superior genotypes. SG and SRM traits, viz.
View Article and Find Full Text PDFEnviron Manage
January 2025
Department of Engineering, Reykjavik University, Reykjavík, Iceland.
This research assesses heavy metal contamination within the riparian zone of the Danro River, a tributary of the Ganges River basin in India, particularly impacted by sand mining activities. The study conducted analyses on major and trace elements in soil samples, focusing on those identified as ecologically hazardous by the Water Framework Directive of India. Utilizing a combination of indices (Enrichment Factor, Pollution Load Index, and Index of geo-accumulation) and statistical techniques such as Principal Component Analysis (PCA), the investigation aimed to evaluate contamination severity, ecological risks, and pollution sources.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Waste Science and Technology, Luleå University of Technology, Luleå, Sweden.
Improper management of wood impregnation chemicals and treated wood has led to soil contamination at many wood treatment sites, particularly with toxic substances like creosote oil and chromated copper arsenate (CCA). The simultaneous presence of these pollutants complicates the choice of soil remediation technologies, especially if they are to be applied in situ. In this laboratory study, we attempted to immobilise arsenic (As) and simultaneously degrade polycyclic aromatic hydrocarbons (PAHs) (constituents of creosote oil) by applying a modified electrochemical oxidation method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!