AI Article Synopsis

  • Researchers developed a new method to analyze solvent polarity on resin surfaces by combining a special type of resin with a technique called optical waveguide spectrometry.
  • The fluorescent solvatochromic resin was created using a chemical reaction known as Suzuki-Miyaura cross-coupling involving specific chemical compounds linked to the resin.
  • Tests using optical waveguide spectrometry demonstrated that the resin exhibited strong changes in fluorescence when exposed to different organic solvents, indicating its effectiveness in measuring solvent polarity.

Article Abstract

We have established a novel analytical method for solvent polarity on resin surface by combining the synthesis of fluorescent solvatochromic resin with optical waveguide spectrometry. The fluorescent solvatochromic resin was obtained via Suzuki-Miyaura cross-coupling between 4-iodobenzoic acid immobilized on Wang resin and 5-[4-(-dihexylamino)phenyl]-2-thienylboronic acid -methyl-iminodiacetic acid (MIDA) ester. The optical waveguide spectrometry studies on the resin showed a strong fluorescent solvatochromism in various organic solvents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599713PMC
http://dx.doi.org/10.3390/ma13204483DOI Listing

Publication Analysis

Top Keywords

fluorescent solvatochromic
12
solvatochromic resin
12
optical waveguide
12
synthesis fluorescent
8
resin suzuki-miyaura
8
suzuki-miyaura cross-coupling
8
solvent polarity
8
waveguide spectrometry
8
resin
6
cross-coupling optical
4

Similar Publications

Tetrabromobisphenol A, but not bisphenol A, disrupts plasma membrane homeostasis in myeloid cell models - A novel threat from an established persistent organic pollutant.

Sci Total Environ

January 2025

Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland. Electronic address:

Article Synopsis
  • The study investigates the effects of Bisphenol A (BPA) and Tetrabromobisphenol A (TBBPA) on the dynamics of biological membranes, focusing on how these persistent organic pollutants impact myeloid cell lines.
  • It was found that TBBPA specifically disrupts the plasma membrane's biophysical homeostasis, increasing mobility and decreasing order, while BPA showed no significant effects.
  • The findings highlight TBBPA's potential to impair immune function, emphasizing the environmental toxicity concerns associated with persistent organic pollutants.
View Article and Find Full Text PDF

The ion binding to the lipid/water interface can substantially influence the structural, functional, and dynamic properties of the cell membrane. Despite extensive research on ion-lipid interactions, the specific effects of ion binding on the polarity and hydration at the lipid/water interface remain poorly understood. This study explores the influence of three biologically relevant divalent cations─Mg, Ca, and Zn─on the depth-dependent interfacial polarity and hydration of zwitterionic DPPC lipid in its gel phase at room temperature.

View Article and Find Full Text PDF

Xanthine nucleosides play a significant role in the expansion of the four-letter genetic code. Herein, 7-functionalized 8-aza-7-deazaxanthine ribo- and 2'-deoxyribonucleosides are described. 2-Amino-6-alkoxy nucleosides were converted to halogenated 8-aza-7-deazaxanthine nucleosides by deamination followed by hydroxy/alkoxy substitution.

View Article and Find Full Text PDF

Aromatic π-complexes play a significant role in various chemical and biological systems, significantly influencing their physico-chemical and spectroscopic properties. The identification of new compounds capable of π-complex formation is therefore of great interest. The paper investigates the fluorescent properties of 1,5-diisocyanonaphthalene (1,5-DIN) in different aromatic solvents, demonstrating its potential for distinguishing between aromatics based on emission spectra.

View Article and Find Full Text PDF

Manipulation and Structural Activity of AcpM in .

Biochemistry

December 2024

Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States.

(Mtb) is a leading cause of death, with an escalating global occurrence of drug-resistant infections that are partially attributed to cell wall mycolic acids derived from type II fatty acid biosynthesis (FAS-II). Here, the central acyl carrier protein, AcpM, contributes to the regulation of complex and specific protein-protein interactions (PPIs), though the orchestration of these events remain largely unresolved due to unique features of AcpM. Limitations include complexities in generating modified AcpM in a single state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!