At present, lithium-ion batteries (LIBs) have received widespread attention as substantial energy storage devices; thus, their electrochemical performances must be continuously researched and improved. In this paper, we demonstrate a simple self-template solvothermal method combined with annealing for the synthesis of NiFeO yolk-shell (NFO-YS) and NiFeO solid (NFO-S) nanospheres by controlling the heating rate and coating them with a carbon layer on the surface via high-temperature carbonization of resorcinol and formaldehyde resin. Among them, NFO-YS@C has an obvious yolk-shell structure, with a core-shell spacing of about 60 nm, and the thicknesses of the NiFeO shell and carbon shell are approximately 15 and 30 nm, respectively. The yolk-shell structure can alleviate volume changes and shorten the ion/electron diffusion path, while the carbon shell can improve conductivity. Therefore, NFO-YS@C nanospheres as the anode materials of LIBs show a high initial capacity of 1087.1 mA h g at 100 mA g, and the capacity of NFO-YS@C nanospheres impressively remains at 1023.5 mA h g after 200 cycles at 200 mA g. The electrochemical performance of NFO-YS@C is significantly beyond NFO-S@C, which proves that the carbon coating and yolk-shell structure have good stability and excellent electron transport ability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600623 | PMC |
http://dx.doi.org/10.3390/nano10101994 | DOI Listing |
Nanoscale
January 2025
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
An all-vanadium-based lithium-ion full battery is successfully assembled with hierarchical micro-nano yolk-shell structures VO and VO as the cathode and anode, which were obtained through a facile solvothermal method with heat treatment under different atmospheres. When used as the cathode of the lithium-ion battery, the hierarchical micro-nano yolk-shell VO demonstrated higher capacities than bulk VO, commercial LiFePO, and LiNiCoMnO cathodes at various current densities. The all-vanadium-based lithium-ion full battery shows good cycle performance at 0.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China. Electronic address:
High-energy-density lithium-sulfur (Li-S) cells are identified as one of the most prospective next-generation energy storage appliances owing to their numerous advantages. Nonetheless, their widespread applications are restricted by the unwanted shuttling effect and tardy conversion reaction kinetics of lithium polysulfides (LiPSs). To address these puzzles, we present an innovative strategy for the one-pot synthesis of LaF@SiO yolk-shell heterostructure nanofibers (YSHNFs) through a straightforward uniaxial electrospinning process coupled with fluorination, avoiding the complexities of traditional methods.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran.
The efficient utilization of light and the prolonged lifetime of photo-induced charge carriers are essential elements that contribute to superior photocatalytic activity. Yolk-shell nanostructures with porous shells and mobile cores offer significant structural advantages in achieving these goals. However, designing yolk-shell multicomponent nanocomposites with diverse architectures remains a persistent challenge.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China. Electronic address:
Rechargeable aluminum batteries (RABs) are promising alternatives to lithium-ion batteries in large-scale energy storage applications owing to the abundance of their raw materials and high safety. However, achieving high energy density and long cycling life simultaneously holds great challenges for RABs, especially for high capacity transition metal selenide (TMS)-based positive materials suffering from structural collapse and dissolution in acidic ionic liquid electrolyte. Herein, Se-doped carbon encapsulated CuSe with yolk-shell structure (YS/Se-C@CuSe) is rationally constructed to address such issues.
View Article and Find Full Text PDFActa Biomater
December 2024
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, PR China; Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, PR China. Electronic address:
Near-infrared (NIR) persistent luminescence nanoparticles (PLNPs) have significant potential in diagnostic and therapeutic applications owing to their unique persistent luminescence (PersL). However, obtaining high-performance NIR PLNPs remains challenging because of the limitations of current synthesis methods. Herein, we introduce a spatial confinement growth strategy for synthesizing high-performance NIR PLNPs using hollow mesoporous silica (hmSiO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!