The article analyzes the cutting process of hard bars. Investigations conducted in industrial conditions demonstrated the presence of surface errors in the machined workpieces in the form of washboard patterns. The purpose of this study was to analyze the results of cutting on band sawing machines with different band saw blades. The cutting processes were conducted on three different horizontal band sawing machine types. Analyzed material was an alloy steel Ø40 mm rod with a hardened surface covered with a thin layer of chromium. The hardness of the outer layer was 547 HV with a core hardness of 180 HV. The surface topography measurements of the processed workpieces were carried out with the 3D Optical Profiler, which supplied information on the irregularities of the processed material texture. In each of the analyzed cases, a corrugated surface was obtained after sawing, which is the effect of the occurrence of the washboarding phenomenon, despite the fact that the teeth of each band saw had variable pitches. The washboarding phenomenon when cutting rods with hard surfaces is caused by the phenomenon of wave regeneration. Despite the use of variable pitch saw blades, the cutting process results in rippling of the sawn surface, which is caused by the high hardness of the outer layer of the workpiece, as well as by the type of tool with spring setting of teeth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599848 | PMC |
http://dx.doi.org/10.3390/ma13204472 | DOI Listing |
Materials (Basel)
October 2020
Institute of Fluid-Flow Machinery Polish Academy of Sciences, 80-233 Gdańsk, Poland.
The article analyzes the cutting process of hard bars. Investigations conducted in industrial conditions demonstrated the presence of surface errors in the machined workpieces in the form of washboard patterns. The purpose of this study was to analyze the results of cutting on band sawing machines with different band saw blades.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!