A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ni-Cu Nanoparticles and Their Feasibility for Magnetic Hyperthermia. | LitMetric

Ni-Cu nanoparticles have been synthesized by reducing Ni and Cu from metal precursors using a sol-gel route followed by annealing at 300 °C for 1, 2, 3, 6, 8, and 10 h for controlled self-regulating magnetic hyperthermia applications. Particle morphology and crystal structure revealed spherical nanoparticles with a cubic structure and an average size of 50, 60, 53, 87, and 87 nm for as-made and annealed samples at 300 °C for 1, 3, 6, and 10 h, respectively. Moreover, hysteresis loops indicated ferromagnetic behavior with saturation magnetization (Ms) ranging from 13-20 emu/g at 300 K. Additionally, Zero-filed cooled and field cooled (ZFC-FC) curves revealed that each sample contains superparamagnetic nanoparticles with a blocking temperature (T) of 196-260 K. Their potential use for magnetic hyperthermia was tested under the therapeutic limits of an alternating magnetic field. The samples exhibited a heating rate ranging from 0.1 to 1.7 °C/min and a significant dissipated heating power measured as a specific absorption rate (SAR) of 6-80 W/g. The heating curves saturated after reaching the Curie temperature (Tc), ranging from 30-61 °C within the therapeutic temperature limit. An in vitro cytotoxicity test of these Ni-Cu samples in biological tissues was performed via exposing human breast cancer MDA-MB231 cells to a gradient of concentrations of the sample with 53 nm particles (annealed at 300 °C for 3 h) and reviewing their cytotoxic effects. For low concentrations, this sample showed no toxic effects to the cells, revealing its biocompatibility to be used in the future for in vitro/in vivo magnetic hyperthermia treatment of cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599664PMC
http://dx.doi.org/10.3390/nano10101988DOI Listing

Publication Analysis

Top Keywords

magnetic hyperthermia
16
300 °c
12
ni-cu nanoparticles
8
concentrations sample
8
magnetic
5
nanoparticles feasibility
4
feasibility magnetic
4
hyperthermia
4
hyperthermia ni-cu
4
nanoparticles synthesized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!