In the last decade, it has been well-established that tumor-infiltrating myeloid cells fuel not only the process of carcinogenesis through cancer-related inflammation mechanisms, but also tumor progression, invasion, and metastasis. In particular, tumor-associated macrophages (TAMs) are the most abundant leucocyte subset in many cancers and play a major role in the creation of a protective niche for tumor cells. Their ability to generate an immune-suppressive environment is crucial to escape the immune system and to allow the tumor to proliferate and metastasize to distant sites. Conventional therapies, including chemotherapy and radiotherapy, are often not able to limit cancer growth due to the presence of pro-tumoral TAMs; these are also responsible for the failure of novel immunotherapies based on immune-checkpoint inhibition. Several novel therapeutic strategies have been implemented to deplete TAMs; however, more recent approaches aim to use TAMs themselves as weapons to fight cancer. Exploiting their functional plasticity, the reprogramming of TAMs aims to convert immunosuppressive and pro-tumoral macrophages into immunostimulatory and anti-tumor cytotoxic effector cells. This shift eventually leads to the reconstitution of a reactive immune landscape able to destroy the tumor. In this review, we summarize the current knowledge on strategies able to reprogram TAMs with single as well as combination therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600332 | PMC |
http://dx.doi.org/10.3390/jcm9103226 | DOI Listing |
Cell Biol Toxicol
January 2025
Department of Oral Anatomy and Physiology, Hospital of Stomatology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Jilin University, Changchun, 130021, China.
Novel strategies to disrupt tumor progression have emerged from studying the interactions between tumor cells and tumor-associated macrophages (TAMs). However, the molecular mechanisms of interactions between tumor cells and TAMs underlying oral squamous cell carcinoma (OSCC) progression have not been fully elucidated. This study explored the molecular mechanism of the HSP27/IL-6 axis in OSCC chemoresistance, invasion, and migration.
View Article and Find Full Text PDFFront Immunol
January 2025
Cancer Discovery Hub, National Cancer Centre Singapore, Singapore, Singapore.
Introduction: Recent epidemiological data suggests a rising incidence of breast angiosarcoma (AS-B) in the Western population, with over two-thirds related to irradiation or chronic lymphedema. However, unlike head and neck angiosarcoma (AS-HN), AS-B disease characteristics in Asia remain unclear.
Methods: We examined clinical patterns of angiosarcoma patients (n = 176) seen in an Asiantertiary cancer center from 1999 to 2021, and specifically investigated the molecular and immune features of AS-B in comparison to AS-HN.
Front Immunol
January 2025
Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
Introduction: Hyperthermia is an established adjunct in multimodal cancer treatments, with mechanisms including cell death, immune modulation, and vascular changes. Traditional hyperthermia applications are resource-intensive and often associated with patient morbidity, limiting their clinical accessibility. Gold nanorods (GNRs) offer a precise, minimally invasive alternative by leveraging near-infrared (NIR) light to deliver targeted hyperthermia therapy (THT).
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
Chimeric antigen receptor (CAR)-based immune cell therapies attack neighboring cancer cells after receptor recognition but are unable to directly affect distant tumor cells. This limitation may contribute to their inefficiency in treating solid tumors, given the restricted intratumoral infiltration and immunosuppressive tumor microenvironment. Therefore, cell-cell fusion as a cell-killing mechanism might develop a novel cytotherapy aimed at improving the efficacy against solid tumors.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Neurosurgery West China Hospital, Sichuan University, Chengdu, China.
Resveratrol, a polyphenolic compound known for its diverse biological activities, has demonstrated multiple pharmacological effects, including anti-inflammatory, anti-aging, anti-diabetic, anti-cancer, and cardiovascular protective properties. Recent studies suggest that these effects are partly mediated through the regulation of macrophage polarization, wherein macrophages differentiate into pro-inflammatory M1 or anti-inflammatory M2 phenotypes. Our review highlights how resveratrol modulates macrophage polarization through various signaling pathways to achieve therapeutic effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!