Wheat and Barley: Acclimatization to Abiotic and Biotic Stress.

Int J Mol Sci

Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland.

Published: October 2020

Twelve articles (ten research papers and two reviews) included in the Special Issue entitled "Wheat and Barley: Acclimatization to Abiotic and Biotic Stress" are summed up here to present the latest research on the molecular background of adaptation to environmental stresses in two cereal species. Crucial research results were presented and discussed, as they may be of importance in breeding aimed at increasing wheat and barley tolerance to abiotic and biotic stresses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583912PMC
http://dx.doi.org/10.3390/ijms21197423DOI Listing

Publication Analysis

Top Keywords

abiotic biotic
12
wheat barley
8
barley acclimatization
8
acclimatization abiotic
8
biotic stress
4
stress twelve
4
twelve articles
4
articles ten
4
ten papers
4
papers reviews
4

Similar Publications

Microplastics in soils: A comprehensive review.

Sci Total Environ

January 2025

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Microplastics (MPs) have become pervasive pollutants in terrestrial ecosystems, raising significant ecological risks and human health concerns. Despite growing attention, a comprehensive understanding of their quantification, sources, emissions, transport, degradation, and accumulation in soils remains incomplete. This review synthesizes the current knowledge on the anthropogenic activities contributing to soil MP contamination, both intentional and unintentional behaviors, spanning sectors including agriculture, domestic activities, transportation, construction, and industry.

View Article and Find Full Text PDF

Significant microplastic accumulation and burial in the intertidal sedimentary environments of the Yellow River Delta.

J Hazard Mater

January 2025

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China. Electronic address:

Estuarine intertidal habitats provide a dynamic and distinctive environment for the transport of microplastics, yet their migration and accumulation in these areas remain poorly understood. Herein, the spatial distribution patterns of microplastics in the estuarine sedimentary environment of the Yellow River Delta were investigated across elevation and depth gradients. Compared to the subtidal and supratidal zones, the estuarine intertidal zone exhibited the highest microplastic abundance in sediment (1027 ± 29 items/kg).

View Article and Find Full Text PDF

The degradation of plastic waste is a major research challenge due to the adverse impacts of microplastic weathering on the environment and ecosystems. As a major source of plastic contamination comes from urban hydrosystems, studying MP degradation prior to their environmental dissemination is crucial. Through a combination of field sampling and laboratory experiments, this study provides a thorough statistical degradation comparison analysis between polyethylene in situ environmentally aged microplastics and artificially aged films.

View Article and Find Full Text PDF

Cotton (Gossypium hirsutum L.), a crucial global fibre and oil seed crop faces diverse biotic and abiotic stresses. Among these, temperature stress strongly influences its growth, prompting adaptive physiological, biochemical, and molecular changes.

View Article and Find Full Text PDF

Wheat (Triticum aestivum L.) is one of the most important cereal crops, with its grain serving as a predominant staple food source on a global scale. However, there are many biotic and abiotic stresses challenging the stability of wheat production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!