Amphiphilic Aminoglycosides as Medicinal Agents.

Int J Mol Sci

Molecular Pharmacochemistry Department, University Grenoble Alpes, CNRS, 470 Rue de la Chimie, F-38000 Grenoble, France.

Published: October 2020

The conjugation of hydrophobic group(s) to the polycationic hydrophilic core of the antibiotic drugs aminoglycosides (AGs), targeting ribosomal RNA, has led to the development of amphiphilic aminoglycosides (AAGs). These drugs exhibit numerous biological effects, including good antibacterial effects against susceptible and multidrug-resistant bacteria due to the targeting of bacterial membranes. In the first part of this review, we summarize our work in identifying and developing broad-spectrum antibacterial AAGs that constitute a new class of antibiotic agents acting on bacterial membranes. The target-shift strongly improves antibiotic activity against bacterial strains that are resistant to the parent AG drugs and to antibiotic drugs of other classes, and renders the emergence of resistant strains highly difficult. Structure-activity and structure-eukaryotic cytotoxicity relationships, specificity and barriers that need to be crossed in their development as antibacterial agents are delineated, with a focus on their targets in membranes, lipopolysaccharides (LPS) and cardiolipin (CL), and the corresponding mode of action against Gram-negative bacteria. At the end of the first part, we summarize the other recent advances in the field of antibacterial AAGs, mainly published since 2016, with an emphasis on the emerging AAGs which are made of an AG core conjugated to an adjuvant or an antibiotic drug of another class (antibiotic hybrids). In the second part, we briefly illustrate other biological and biochemical effects of AAGs, i.e., their antifungal activity, their use as delivery vehicles of nucleic acids, of short peptide (polyamide) nucleic acids (PNAs) and of drugs, as well as their ability to cleave DNA at abasic sites and to inhibit the functioning of connexin hemichannels. Finally, we discuss some aspects of structure-activity relationships in order to explain and improve the target selectivity of AAGs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583001PMC
http://dx.doi.org/10.3390/ijms21197411DOI Listing

Publication Analysis

Top Keywords

amphiphilic aminoglycosides
8
antibiotic drugs
8
bacterial membranes
8
antibacterial aags
8
class antibiotic
8
nucleic acids
8
antibiotic
6
aags
6
drugs
5
aminoglycosides medicinal
4

Similar Publications

Hepatocellular carcinoma () is one of the leading causes of cancer deaths due to its late diagnosis and restricted therapeutic options. Therefore, the search for appropriate alternatives to commonly applied therapies remains an area of high clinical need. Here we investigated the therapeutic potential of the glucosylceramide synthase (GCS) inhibitor Genz-123346 and the cationic amphiphilic drug aripiprazole on the inhibition of Huh7 and Hepa 1-6 hepatocellular cancer cell and tumor microsphere growth.

View Article and Find Full Text PDF

Multifunctional "Add-On" Module Enabled NIR-II Imaging-Guided Synergistic Photothermal and Chemotherapy of Drug-Resistant Lung Cancer.

ACS Appl Mater Interfaces

December 2024

Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.

Imaging-guided chemo-photothermal combination therapy (chemo-PTT) is recognized for its synergistic therapeutic effects, reduced side effects, and minimal drug resistance, while the development of such theranostics has been hampered by poor imaging and therapy performance and tedious formulation. Herein, we introduce an all-in-one "add-on" module () for the convenient construction of doxorubicin (DOX)-loaded nanoparticles (DOX@BBT) and efficient second near-infrared (NIR-II) fluorescence imaging (FLI)-guided synergistic chemo-PTT of drug-resistant lung cancer. The delicate Janus amphiphilic structure of enables multifunctionality, including NIR-II FLI, aggregation-induced emission (AIE) characteristics, moderate photothermal conversion efficiency (PCE), excellent photostability, and polyethylene glycolation (PEGylation), which could improve the NIR-II FLI and PTT performance, relieve the complexity in theranostics, and enable high reproducibility of the multifunctional theranostics.

View Article and Find Full Text PDF

Micelle-like Nanoparticles for Drug Delivery and Magnetically Enhanced Tumor Chemotherapy.

ACS Biomater Sci Eng

December 2024

School of Life Science and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, China.

Using the coordination bonds between transition metal atoms and electron-rich functional groups, we synthesized two kinds of micelle-like nanoparticles. Using magnetic FeO as the core, poly(methyl methacrylate) (PMMA) and poly(acrylic acid) (PAA) brushes were grafted via activators regenerated by electron transfer for atom transfer radical polymerization (ARGET-ATRP), which formed micelle-like magnetic nanoparticles FeO/PAA-PMMA with a hydrophobic outer layer and FeO/PMMA-PAA with a hydrophilic outer layer. Both the micelle-like nanoparticles had amphiphilic properties and can be used to load hydrophilic or hydrophobic drugs.

View Article and Find Full Text PDF

Multifunctional Temperature-Sensitive Lipid-Protein-Polymer Conjugates: Tailored Drug Delivery and Bioimaging.

ACS Appl Mater Interfaces

December 2024

Lipid Utilization Laboratories - Lipids/Materials Chemistry Group, Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.

In this study, we introduce a protein-polymer bioconjugate comprising bovine serum albumin (BSA) and a lipid-based thermoresponsive block copolymer. These amphiphilic BSA-polymer conjugates can autonomously be organized into vesicular compartments for codelivery of glucose oxidase (GOx) and doxorubicin (DOX), demonstrating high drug loading content and remarkable antitumor activity via synergistic cancer therapy combining chemo-starvation strategies. Through the incorporation of a hydrophilic BSA block, the lower critical solution temperature (LCST) of the bioconjugates is tuned to around 40 °C, facilitating their targeted drug delivery to tumor cells.

View Article and Find Full Text PDF

Despite the advent of novel therapeutics, the efficient delivery of antineoplastic drugs remains a challenge. Biodegradable polymeric micelles represent a promising frontier by offering enhanced drug solubility, tumor targeting, and controlled release profiles. However, the underlying dynamics governing the drug encapsulation and solvation within these micellar structures is still vague and poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!