Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, succinylated nanoparticles from normal (NPS-N), high-amylose (NPS-H), and high-amylopectin corn starch (NPS-W) were synthesized, characterized, and studied for the nanoencapsulation of the Ardisia compressa anthocyanins. The nanoparticle‒anthocyanin interaction was also investigated. The succinylated starch nanoparticles (S-SNPs) had hydrodynamic sizes of 65-390 nm, degrees of substitution (DS) of 0.014-0.032, ζ-potential values of up to -34 mV and a nanocolloid behavior. NPS-N and NPS-W showed the highest (p < 0.05) encapsulation efficiencies (EE) (52 and 49 %, respectively) compared than NPS-H (45 %). Thereby, the lowest DS obtained, and the branched amylopectin structure favored the EE. The nanoparticle-anthocyanin interaction occurred through hydrophobic and electrostatic interactions and influenced significantly (p < 0.05) the hydrodynamic size and surface properties of the resulting nanocapsules. The relative crystallinity (RC) decreased significantly (p < 0.05) in the S-SNPs, but the nanocapsules mostly experimented a structural recrystallization and showed melting temperatures>150 °C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2020.116972 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!