Analysis of hyaluronan and its derivatives using chromatographic and mass spectrometric techniques.

Carbohydr Polym

Department of Analytical Chemistry, Faculty of Science, Palacký University, 17.listopadu 12, 77146, Olomouc, Czech Republic; Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska, 1083, Prague, Czech Republic.

Published: December 2020

The aim of this paper is to review chromatographic and mass-spectrometric methods and underline the best analytical approaches for successful analysis of various hyaluronic acid species in different types of samples. Hyaluronan-degrading enzymes and chemical depolymerization produce di- or oligosaccharides suitable for hyaluronan quantification or structural characterization of hyaluronan derivatives. Efficient purification and pre-column derivatization of hyaluronan disaccharides by reductive amination allow subnanogram quantification in biological samples. The chromatographic separation is capable to distinguish all glycosaminoglycans disaccharides and to resolve hyaluronan fragments with 2-40 monomers. Using electrospray ionization or matrix assisted laser desorption ionization, hyaluronan fragments up to 8 kDa or 41 kDa, respectively, can be observed. One- or two-dimensional chromatographic separation with higly sensitive mass-spectrometric detection is an indispensable tool for revealing substituent position, extent of modification and substitution patterns of chemically modified hyaluronan derivatives. It is essential for studying structure-biological function relationships of hyaluronan and its derivatives.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2020.117014DOI Listing

Publication Analysis

Top Keywords

hyaluronan derivatives
16
chromatographic separation
8
hyaluronan fragments
8
hyaluronan
7
analysis hyaluronan
4
derivatives
4
chromatographic
4
derivatives chromatographic
4
chromatographic mass
4
mass spectrometric
4

Similar Publications

Tumor and intratumoral pathogen cascade-targeting photothermal nanotherapeutics for boosted immunotherapy of colorectal cancer.

J Control Release

January 2025

State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China. Electronic address:

Clinical benefits of immunotherapy in colorectal cancer (CRC) are limited due to the low immunogenicity and immunosuppressive tumor microenvironment. Fusobacterium nucleatum (Fn) is discovered to colonize CRC tumors and dampen immunotherapy by fostering an immunosuppressive TME. Herein, a controllable "Shielding-deshielding" N-acetylgalactosamine (GalNAc)-derived photothermal nanotherapeutic is developed to mediate cascade targeting toward tumor and intratumoral Fn for enhanced photothermal-immunotherapy.

View Article and Find Full Text PDF

Sprayable Hydrogel for pH-Responsive Nanozyme-Derived Bacteria-Infected Wound Healing.

ACS Appl Mater Interfaces

January 2025

School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, P. R. China.

Long-term inflammation and persistent bacterial infection are primary contributors to unhealed chronic wounds. The use of conventional antibiotics often leads to bacteria drug resistance, diminishing wound healing effectiveness. Nanozymes have become a promising alternative to antimicrobial materials due to their low cost, easy synthesis, and good stability.

View Article and Find Full Text PDF

The immunomodulatory properties of hyaluronan and its derivatives are key to their use in medicine and tissue engineering. In this work we evaluated the capability of soluble tyramine-modified hyaluronan (THA) synthesized from hyaluronan of two molecular weights (low M = 280 kDa and high M = 1640 kDa) for polarization of THP-1 and peripheral blood mononuclear cells (PBMCs)-derived macrophages (MΦs). We demonstrate the polarization effects of the supplemented THA by flow cytometry and bead-based multiplex immunoassay for the THP-1 derived MΦs and by semi-automated image analysis from confocal microscopy, immunofluorescent staining utilizing CD68 and CD206 surface markers, RT-qPCR gene expression analysis, as well as using the enzyme-linked immunosorbent assay (ELISA) for PBMCs-derived MΦs.

View Article and Find Full Text PDF

Youthful Stem Cell Microenvironments: Rejuvenating Aged Bone Repair Through Mitochondrial Homeostasis Remodeling.

Adv Sci (Weinh)

January 2025

Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Extracellular matrix (ECM) derived from mesenchymal stem cells regulates antioxidant properties and bone metabolism by providing a favorable extracellular microenvironment. However, its functional role and molecular mechanism in mitochondrial function regulation and aged bone regeneration remain insufficiently elucidated. This proteomic analysis has revealed a greater abundance of proteins supporting mitochondrial function in the young ECM (Y-ECM) secreted by young bone marrow-derived mesenchymal stem cells (BMMSCs) compared to the aged ECM (A-ECM).

View Article and Find Full Text PDF

Background: Keloids are disfiguring, fibrotic scar-like lesions that are challenging to treat and commonly recur after therapy. A deeper understanding of the mechanisms driving keloid formation is necessary for the development of more effective therapies. Reduced vitamin D receptor (VDR) expression has been observed in keloids, implicating vitamin D signaling in keloid pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!