Molecular rotor as a structural probe of glucan polymers: Amylopectin, phytoglycogen, and their β-limit dextrins as models.

Carbohydr Polym

Department of Food Science, Purdue University, West Lafayette, IN, 47907, United States; Whistler Center for Carbohydrate Research, West Lafayette, IN, 47907, United States. Electronic address:

Published: December 2020

Fluorescence emissions of molecular rotors (MRs) are affected by local restrictions to molecular motion, and therefore it was considered that MRs can be used as structural probes of biopolymers. In this study, 9-(2-carboxy-2-cyanovinyl)-julolidine (CCVJ), a hydrophilic MR, was used to differentiate branched α-D-glucans, including amylopectin, phytoglycogen, and their β-limit dextrins. CCVJ emissions of glucan dispersions were correlated with dispersion viscosities and glucan branch structures. In diluted glucan dispersions, CCVJ emission showed essentially linear correlation with glucan content. In concentrated glucan dispersions, CCVJ emission correlated with viscosity in a double-logarithmic linear pattern, with phytoglycogen showing much greater sensitivities than amylopectin. In the plots of CCVJ emission vs. molar amount of branch, phytoglycogen materials showed greater slopes than their amylopectin counterparts, suggesting evident effects of branch structure on the restrictions to CCVJ molecules. Overall, CCVJ has demonstrated its fluorescent sensitivity with glucans, showing strong potentials as a structural probe of biopolymers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2020.116859DOI Listing

Publication Analysis

Top Keywords

glucan dispersions
12
ccvj emission
12
structural probe
8
amylopectin phytoglycogen
8
phytoglycogen β-limit
8
β-limit dextrins
8
dispersions ccvj
8
ccvj
7
glucan
6
molecular rotor
4

Similar Publications

Carboxylated cellulose nanocrystals mediated flower-like zinc oxide for antimicrobial without activation of light.

J Colloid Interface Sci

April 2025

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.

View Article and Find Full Text PDF

The research aimed to assess the effect of polysaccharides (maltodextrin and β-cyclodextrin) on technological properties of low-lactose milk powder obtained by spray drying of β-galactosidase hydrolysed milk. Low-lactose milk powders i.e.

View Article and Find Full Text PDF

Wastewater is commonly contaminated with many pharmaceutical pollutants, so an efficient purification method is required for their removal from wastewater. In this regard, an innovative tertiary Se/SnO@CMC/Fe-GA nanocomposite was synthesized through encapsulation of metal organic frameworks (Fe-glutaric acid) onto Se/SnO-embedded-sodium carboxy methyl cellulose matrix to thoroughly evaluate its effectiveness for adsorption of levofloxacin drug from wastewater. The prepared Se/SnO@CMC/Fe-GA nanocomposite was analyzed via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to valuate optical property, size, morphology, thermal stability, and chemical composition.

View Article and Find Full Text PDF

This study aims to explore the development of natural bio-based amphiphilic block copolymers for drug delivery applications. We investigated block copolymers derived from tamarind seed xyloglucan and solanesol, focusing on their synthesis, structural analysis, aqueous self-assembly, and drug encapsulation. Specifically, xyloglucan hydrolysate segments with number-average degrees of polymerization (DPs) of between 8 and 44 (XOS, XMS, XMS, XMS, and XMS) were used as the hydrophilic blocks, whereas plant-sourced solanesol was selected as the hydrophobic segment.

View Article and Find Full Text PDF

Methotrexate (MTX) is classified as an antimetabolite. It's commonly used to treat lung cancer. MTX is an immunosuppressant following the above-mentioned mechanism of action due to its poor selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!