Circulating tumor DNA (ctDNA) in fluids has gained attention because ctDNA seems to identify tumor-specific abnormalities, which could be used for diagnosis, follow-up of treatment, and prognosis: the so-called liquid biopsy. Liquid biopsy is a minimally invasive approach and presents the sum of ctDNA from primary and secondary tumor sites. It has been possible not only to quantify the amount of ctDNA but also to identify (epi)genetic changes. Specific mutations in genes have been identified in the plasma of patients with several types of cancer, which highlights ctDNA as a possible cancer biomarker. However, achieving detectable concentrations of ctDNA in body fluids is not an easy task. ctDNA fragments present a short half-life, and there are no cut-off values to discriminate high and low ctDNA concentrations. Here, we discuss the use of ctDNA as a cancer biomarker, the main methodologies, the inherent difficulties, and the clinical predictive value of ctDNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.critrevonc.2020.103109 | DOI Listing |
Bioanalysis
January 2025
Bioanalytical Services Department, WuXi AppTec (Shanghai) Co. Ltd, Shanghai, China.
Background: Circulating tumor DNA (ctDNA) is a promising biomarker for cancer prognosis and drug development. A major challenge in the ctDNA determination method is discriminating ctDNA from highly similar but significantly more abundant wild-type DNA sensitively and accurately.
Method: An ultrasensitive qPCR method termed Triple Enrichment Amplification of Mutation PCR (TEAM-PCR) was developed to detect EGFR T790M mutation.
Heliyon
January 2025
Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
This work reports the synthesis of a copper metal complex with the nonsteroidal anti-inflammatory drug (NSAID) ibuprofen, and 2,2'-dipyridylamine employing microwave-assisted synthesis (MWAS). To the best of authors knowledge, this is the first study reporting a NSAID-based complex achieved through MWAS. The coordination compound was characterised by elemental analysis, Fourier transform infrared spectroscopy, thermogravimetry, and ultraviolet-visible spectrophotometry.
View Article and Find Full Text PDFHeliyon
January 2025
Sir Peter MacCallum Department of Oncology, The University of Melbourne, Australia.
Background: TG02 is a peptide-based cancer vaccine eliciting immune responses to oncogenic codon 12/13 mutations. This phase 1 clinical trial (NCT02933944) assessed the safety and immunological efficacy of TG02 adjuvanted by GM-CSF in patients with -mutant colorectal cancer.
Methods: In the interval between completing CRT and pelvic exenteration, patients with resectable mutation-positive, locally advanced primary or current colorectal cancer, received 5-6 doses of TG02/GM-CSF.
Cell Rep Med
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel. Electronic address:
The analysis of cell-free tumor DNA (ctDNA) and proteins in the blood of patients with cancer potentiates a new generation of non-invasive diagnostic approaches. However, confident detection of tumor-originating markers is challenging, especially in the context of brain tumors, where these analytes in plasma are extremely scarce. Here, we apply a sensitive single-molecule technology to profile multiple histone modifications on individual nucleosomes from the plasma of patients with diffuse midline glioma (DMG).
View Article and Find Full Text PDFTarget Oncol
January 2025
Hematology-Oncology Service, Department of Medicine, Centre hospitalier de l'Université de Montréal (CHUM), 1000, rue Saint-Denis, Montreal, QC, Canada.
Background: BERIL-1 was a randomized phase 2 study that studied paclitaxel with either buparlisib, a pan-class I PIK3 inhibitor, or placebo in patients with recurrent or metastatic (R/M) head and neck squamous cell cancer (HNSCC). Considering the therapeutic paradigm shift with immune checkpoint inhibitors (ICIs) now approved in the first-line setting, we present an updated immunogenomic analysis of patients enrolled in BERIL-1, including patients with immune-infiltrated tumors.
Objective: The objective of this study was to identify biomarkers predictive of treatment efficacy in the context of the post-ICI therapeutic landscape.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!