Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To establish and validate a combined clinical-radiomics model for preoperative prediction of synchronous peritoneal metastasis (PM) in patients with colorectal cancer (CRC).
Method: We enrolled 779 patients (585 in the training set: 553 with nonmetastasis (NM) and 32 with PM; 194 in the validation set: 184 with NM and 10 with PM) with clinicopathologically confirmed CRC. The significant clinical risk factors were used to build the clinical model; the least absolute shrinkage and selection operator (LASSO) algorithm was adopted to construct a radiomics signature, which included imaging features of the primary lesion and the largest peripheral lymph node, and stepwise logistic regression was applied to select the significant variables to develop the clinical-radiomics model. We used the Akaike information criterion (AIC) and receiver operating characteristic analysis to compare the goodness of fit and the prediction performance of the three models respectively. An independent validation cohort, containing 139 consecutive patients from February to September 2018, was used to evaluate the performance of the optimal model.
Results: Among the three models, the clinical-radiomics model (AUC = 0.855; AIC = 1043.2) was identified as the optimal model, with the maximum AUC value and the minimum AIC value (the clinical-only model: AUC = 0.771, AIC = 1277.7; the radiomics-only model: AUC = 0.764, AIC = 1280.5). The clinical-radiomics model also showed good discrimination in both the validation cohort (AUC = 0.793) and the independent validation cohort (AUC = 0.781).
Conclusions: The present study proposes a clinical-radiomics model created with the CT-based radiomics signature and key clinical features that can potentially be applied in the individual preoperative prediction of synchronous PM for CRC patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejrad.2020.109326 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!