Fatty acids (FAs) and their metrics have been used to detect and assess the impacts of urbanization and agriculture on aquatic ecosystems. Here, we investigated whether seston FAs are also useful to characterize and understand early-stage aquaculture impacts in a large tropical reservoir (Furnas Reservoir, SE Brazil). We tested the hypothesis that single FAs, as well as selected FA metrics in the seston fraction, are efficient markers of net-cage fish farming effects. In general, fish farming had only minor effects on standard water chemical variables, mainly small increases in ammonium, nitrate, and dissolved organic nitrogen concentrations. By increasing concentrations of several polyunsaturated FAs, early-stage fish farming improved sestonic food quality in the more oligotrophic branch of the reservoir under drought conditions. However, in general, increases in concentrations of bacterial FAs, due to fish farming, suggested organic matter (OM) subsidies from non-ingested and non-assimilated fish feed. In the more eutrophic reservoir branch, seston FA profiles suggested that fish farming caused an increase of low-quality food resources, such as cyanobacteria. Thus, background impact levels may determine the biochemical responses of tropical reservoirs to fish farming. Higher contributions of potentially sewage-derived and bacterial FAs during drought conditions, especially at reference sites of the more oligotrophic branch, suggested that drought shifted OM inputs towards anthropogenic sources, thereby overwriting land-use related differences between reservoir branches and homogenizing their environmental conditions. In conclusion, FA variables were useful to evaluate and understand environmental conditions, as well as the effects of early-stage fish farming and drought, and should be considered in impact assessments in tropical lentic ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.142660DOI Listing

Publication Analysis

Top Keywords

fish farming
28
fatty acids
8
large tropical
8
tropical reservoir
8
fish
8
early-stage fish
8
oligotrophic branch
8
drought conditions
8
bacterial fas
8
environmental conditions
8

Similar Publications

Gonadal miRNomes and transcriptomes in infected fish reveal sexually dimorphic patterns of the immune response.

Funct Integr Genomics

January 2025

Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, 08003, Spain.

Fish disease outbreaks caused by bacterial burdens are responsible for decreasing productivity in aquaculture. Unraveling the molecular mechanisms activated in the gonads after infections is pivotal for enhancing husbandry techniques in fish farms, ensuring disease management, and selecting the most resilience phenotype. The present study, with an important commercial species the European sea bass (Dicentrarchus labrax), an important commercial species in Europe, examined changes in the miRNome and transcriptome 48 h after an intraperitoneal infection with Vibrio anguillarum.

View Article and Find Full Text PDF

Glycinin-induced foodborne enteritis is a significant obstacle that hinders the healthy development of the aquatic industry. Glycinin causes growth retardation and intestinal damage in hybrid yellow catfish ( ♀ × ♂), but its immune mechanisms are largely unknown. In the current study, five experimental diets containing 0% (CK), 1.

View Article and Find Full Text PDF

Objective: To characterize food group consumption, assess the contribution of food groups to energy and micronutrient intake, and estimate usual nutrient intake among adults in rural Sri Lanka.

Design: A baseline survey (Dec 2020-Feb 2021) was conducted as part of an agriculture-based, nutrition-sensitive resilience program evaluation. Dietary intake was assessed using telephone-based 24-hour recalls (n=1283), with repeat recalls from 769 participants.

View Article and Find Full Text PDF

Alkaline stress impairs fish productivity and performance and, therefore, is considered one of the major challenges facing aquaculture. In this work, the effects of supplementing diets with camel whey protein hydrolysates (WPH) on growth, digestion, antioxidant capacity, and gene expression were investigated in Nile tilapia (Oreochromis niloticus) under alkaline stress. A total of 160 fish (16.

View Article and Find Full Text PDF

Micro(nano)plastics (MNPs), widely distributed in the environment, can be ingested and accumulated by various organisms. Recently, the transgenerational transport of MNPs from parental organisms to their offspring has attracted increasing attention. In this review, we summarize the patterns, specific pathways, and related mechanisms of intergenerational transfer of MNPs in plants, non-mammals (zooplankton and fish) and mammals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!