Dietary supplementation with calanus oil, a novel wax ester-rich marine oil, has been shown to reduce adiposity in high-fat diet (HFD)-induced obese mice. Current evidence suggests that obesity and its comorbidities are intrinsically linked with unfavorable changes in the intestinal microbiome. Thus, in line with its antiobesity effect, we hypothesized that dietary supplementation with calanus oil should counteract the obesity-related deleterious changes in the gut microbiota. Seven-week-old female C57bl/6J mice received an HFD for 12 weeks to induce obesity followed by 8-week supplementation with 2% calanus oil. For comparative reasons, another group of mice was treated with exenatide, an antiobesogenic glucagon-like peptide-1 receptor agonist. Mice fed normal chow diet or nonsupplemented HFD for 20 weeks served as lean and obese controls, respectively. 16S rRNA gene sequencing was performed on fecal samples from the colon. HFD increased the abundance of the Lactococcus and Leuconostoc genera relative to normal chow diet, whereas abundances of Allobaculum and Oscillospira were decreased. Supplementation with calanus oil led to an apparent overrepresentation of Lactobacillus and Streptococcus and underrepresentation of Bilophila. Exenatide prevented the HFD-induced increase in Lactococcus and caused a decrease in the abundance of Streptococcus compared to the HFD group. Thus, HFD altered the gut microbiota composition in an unhealthy direction by increasing the abundance of proinflammatory genera while reducing those considered health-promoting. These obesity-induced changes were antagonized by both calanus oil and exenatide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nutres.2020.09.002 | DOI Listing |
Prog Lipid Res
December 2024
Institute of Food Science and Human Nutrition, Foundation Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany; The Fatty Acid Research Institute, 5009 W. 12th St. Ste 5, Sioux Falls, SD 57106, United States. Electronic address:
The bioavailability of long-chain omega-3 fatty acids is a critical yet often overlooked factor influencing their efficacy. This review evaluates the bioavailability of EPA/DHA from acute (single-dose) and chronic human studies, focusing on (a) chemical forms such as triacylglycerols (TAG, natural and re-esterified, rTAG), free fatty acids (FFA), and phospholipids (PL) from sources like fish, krill, and microalgae, and (b) delivery methods like microencapsulation and emulsification. Bioavailability for isolated chemically forms followed the order: FFA > PL > rTAG > unmodified TAG > ethyl esters (EE).
View Article and Find Full Text PDFEnviron Pollut
December 2024
DTU AQUA, Technical University of Denmark, Denmark.
Microplastics (MPs) and petroleum hydrocarbons are contaminants of emerging concern in the Arctic, but little is known about their co-exposure effects. In this study, we present the first assessment of the sublethal impacts resulting from combined exposure to microplastics and oil in three key Arctic copepod species. Specifically, we investigated the effects of a 5-day exposure to oil alone (1 μL L) and in combination with MPs (polyethylene microspheres, 20 μm, 20 MP mL) and dispersant (Corexit 9500, 0.
View Article and Find Full Text PDFJ Plankton Res
December 2023
Fisheries and Oceans Canada, Bedford Institute of Oceanography, P.O. Box 1006, Dartmouth, NS B2Y 4A2, Canada.
Environ Sci Technol
February 2024
National Institute of Aquatic Resources (DTU Aqua), Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
The Arctic is undergoing rapid changes, and biota are exposed to multiple stressors, including pollution and climate change. Still, little is known about their joint impact. Here, we investigated the cumulative impact of crude oil, warming, and freshening on the copepod species and .
View Article and Find Full Text PDFAquat Toxicol
February 2024
Norwegian Institute for Water Research (NIVA), 0579 Oslo, Norway; Norwegian University of Life Sciences (NMBU), N-1433 Ås, Norway.
Oil and gas industries in the Northern Atlantic Ocean have gradually moved closer to the Arctic areas, a process expected to be further facilitated by sea ice withdrawal caused by global warming. Copepods of the genus Calanus hold a key position in these cold-water food webs, providing an important energetic link between primary production and higher trophic levels. Due to their ecological importance, there is a concern about how accidental oil spills and produced water discharges may impact cold-water copepods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!