Background And Objective: New proposals to improve the regulation of hypnosis in anaesthesia based on the development of advanced control structures emerge continuously. However, a fair study to analyse the real benefits of these structures compared to simpler clinically validated PID-based solutions has not been presented so far. The main objective of this work is to analyse the performance limitations associated with using a filtered PID controller, as compared to a high-order controller, represented through a Youla parameter.
Methods: The comparison consists of a two-steps methodology. First, two robust optimal filtered PID controllers, considering the effect of the inter-patient variability, are synthesised. A set of 47 validated paediatric pharmacological models, identified from clinical data, is used to this end. This model set provides representative inter-patient variability Second, individualised filtered PID and Youla controllers are synthesised for each model in the set. For fairness of comparison, the same performance objective is optimised for all designs, and the same robustness constraints are considered. Controller synthesis is performed utilising convex optimisation and gradient-based methods relying on algebraic differentiation. The worst-case performance over the patient model set is used for the comparison.
Results: Two robust filtered PID controllers for the entire model set, as well as individual-specific PID and Youla controllers, were optimised. All considered designs resulted in similar frequency response characteristics. The performance improvement associated with the Youla controllers was not significant compared to the individually tuned filtered PID controllers. The difference in performance between controllers synthesized for the model set and for individual models was significantly larger than the performance difference between the individual-specific PID and Youla controllers. The different controllers were evaluated in simulation. Although all of them showed clinically acceptable results, the robust solutions provided slower responses.
Conclusion: Taking the same clinical and technical considerations into account for the optimisation of the different controllers, the design of individual-specific solutions resulted in only marginal differences in performance when comparing an optimal Youla parameter and its optimal filtered PID counterpart. The inter-patient variability is much more detrimental to performance than the limitations imposed by the simple structure of the filtered PID controller.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2020.105783 | DOI Listing |
ISA Trans
December 2024
Department of Automation, Xiamen University, Xiamen City 361000, China. Electronic address:
In general, auto-tuning implementation of PID controllers relies on dual controllers, exciting/identification experiments or some prior knowledge on the process and hence the considerable cost on auto-tuning implementation occurs. To deal with such a problem, a new auto-tuning scheme of the FPID controller is developed for minimum variance tasks under routine operating conditions in which the closed-loop system is running without any external excitation other than natural disturbances. This paper reveals that the stochastic disturbance model can be uniquely determined from the first several terms of the impulse response coefficients of the closed-loop system when the precondition on the time delay and the order of the disturbance model is satisfied.
View Article and Find Full Text PDFIn deep-space optical communication systems, precise pointing and aiming of the laser beam is essential to ensure the stability of the laser link. In this paper, an adaptive compound control system based on adaptive feedforward and Proportional-Integral-Differentiation (PID) feedback is proposed. The feedforward controller is stabilized using Youla-Kucera (YK) parameterization.
View Article and Find Full Text PDFSci Rep
October 2024
ENET Centre, VSB-Technical University of Ostrava, 708 00, Ostrava, Czech Republic.
Sci Rep
October 2024
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.
Power electronic converters are widely used in various fields of electrical equipment. Due to their fast dynamics and non-linear nature, controlling them requires dealing with various complexities. Therefore, having a well-designed, high-speed, and robust controller is critical to ensure the effective operation of these devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!