Autoregressive models are among the most successful neural network methods for estimating a distribution from a set of samples. However, these models, such as other neural methods, need large data sets to provide good estimations. We believe that knowing structural information about the data can improve their performance on small data sets. Masked autoencoder for distribution estimation (MADE) is a well-structured density estimator, which alters a simple autoencoder by setting a set of masks on its connections to satisfy the autoregressive condition. Nevertheless, this model does not benefit from extra information that we might know about the structure of the data. This information can especially be advantageous in case of training on small data sets. In this article, we propose two autoencoders for estimating the density of a small set of observations, where the data have a known Markov random field (MRF) structure. These methods modify the masking process of MADE, according to conditional dependencies inferred from the MRF structure, to reduce either the model complexity or the problem complexity. We compare the proposed methods with some related binary, discrete, and continuous density estimators on MNIST, binarized MNIST, OCR-letters, and two synthetic data sets.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2020.3026572DOI Listing

Publication Analysis

Top Keywords

data sets
20
masked autoencoder
8
autoencoder distribution
8
distribution estimation
8
data
8
small data
8
mrf structure
8
sets
5
small
4
estimation small
4

Similar Publications

Neuroinflammation immediately follows the onset of ischemic stroke in the middle cerebral artery. During this process, microglial cells are activated in and recruited to the penumbra. Microglial cells can be activated into two different phenotypes: M1, which can worsen brain injury; or M2, which can aid in long-term recovery.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterized by repetitive alveolar injuries with excessive deposition of extracellular matrix (ECM) proteins. A crucial need in understanding IPF pathogenesis is identifying cell types associated with histopathological regions, particularly local fibrosis centers known as fibroblast foci. To address this, we integrated published spatial transcriptomics and single-cell RNA sequencing (scRNA-seq) transcriptomics and adopted the Query method and the Overlap method to determine cell type enrichments in histopathological regions.

View Article and Find Full Text PDF

BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories.

J Chem Inf Model

January 2025

Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, California 91016, United States.

Bayesian network modeling (BN modeling, or BNM) is an interpretable machine learning method for constructing probabilistic graphical models from the data. In recent years, it has been extensively applied to diverse types of biomedical data sets. Concurrently, our ability to perform long-time scale molecular dynamics (MD) simulations on proteins and other materials has increased exponentially.

View Article and Find Full Text PDF

Anonymize or synthesize? Privacy-preserving methods for heart failure score analytics.

Eur Heart J Digit Health

January 2025

Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany.

Aims: Data availability remains a critical challenge in modern, data-driven medical research. Due to the sensitive nature of patient health records, they are rightfully subject to stringent privacy protection measures. One way to overcome these restrictions is to preserve patient privacy by using anonymization and synthetization strategies.

View Article and Find Full Text PDF

Deep CNN ResNet-18 based model with attention and transfer learning for Alzheimer's disease detection.

Front Neuroinform

January 2025

Department of Computer Science and Engineering, Institute of Technology, Nirma University, Gujarat, India.

Introduction: The prevalence of age-related brain issues has risen in developed countries because of changes in lifestyle. Alzheimer's disease leads to a rapid and irreversible decline in cognitive abilities by damaging memory cells.

Methods: A ResNet-18-based system is proposed, integrating Depth Convolution with a Squeeze and Excitation (SE) block to minimize tuning parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!