Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cloud-based visualization services have made visual analytics accessible to a much wider audience than ever before. Systems such as Tableau have started to amass increasingly large repositories of analytical knowledge in the form of interactive visualization workbooks. When shared, these collections can form a visual analytic knowledge base. However, as the size of a collection increases, so does the difficulty in finding relevant information. Content-based recommendation (CBR) systems could help analysts in finding and managing workbooks relevant to their interests. Toward this goal, we focus on text-based content that is representative of the subject matter of visualizations rather than the visual encodings and style. We discuss the challenges associated with creating a CBR based on visualization specifications and explore more concretely how to implement the relevance measures required using Tableau workbook specifications as the source of content data. We also demonstrate what information can be extracted from these visualization specifications and how various natural language processing techniques can be used to compute similarity between workbooks as one way to measure relevance. We report on a crowd-sourced user study to determine if our similarity measure mimics human judgement. Finally, we choose latent Dirichl et al.ocation (LDA) as a specific model and instantiate it in a proof-of-concept recommender tool to demonstrate the basic function of our similarity measure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2020.3030387 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!