An essential key to enhancing the specific capacity and cyclic stability of transition metal oxide materials is the hybridization of carbon compounds by binder-free methods for supercapacitors. Carbonaceous compounds shorten the electron-ion diffusion pathways due to their high active surface area and conductivity. Herein, we focus on improving the specific energy, stability, and conductivity of the electrode by the incorporation of nanosized carbon material. The integration of nano carbons from viable eco-friendly glucose with CoMoO4 enhanced the experimental specific capacity of the electrode. The self-grown CoMoO4 on a nickel foam (CMO-NF) was confirmed as the best approach after extensive optimization process by the feasible hydrothermal (HT) method. The amount of carbon deposited and the structural morphology on the fabricated CoMoO4-glucose-derived carbon (CMO-GC) electrode was varied by adjusting the concentration of glucose by the viable HT technique. Notably, the hybrid CMO-GC-2 achieved a maximum specific capacity of 851.85 C g-1 at 1 A g-1, and it is relatively higher than that of CMO-NF (301.4 C g-1). The asymmetric supercapacitor device (CMO-GC-2//AC) demonstrated excellent energy density (36.86 W h kg-1 for 152.84 W kg-1), power density (3209.35 W kg-1 for 11.19 W h kg-1), and extensive capacity retention of 87% for up to 5000 cycles. The high performance is related to the synergetic effect of EDLC and the redox reaction, with nano-architecture and well-defined morphology of the electrode material.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0dt02204gDOI Listing

Publication Analysis

Top Keywords

specific capacity
12
asymmetric supercapacitor
8
electrode
5
synergistic effects
4
effects nanocarbon
4
nanocarbon spheres
4
spheres sheathed
4
sheathed binderless
4
binderless comoo
4
comoo electrode
4

Similar Publications

Allergen immunotherapy (AIT) is currently the most effective immunologic form of treatment for patients with atopic allergic diseases commonly used by allergist/immunologists to reduce allergic symptoms by gradually desensitizing the immune system to specific allergens. Currently, the primary mechanism of AIT emphasizes the crucial role of immune regulation, which involves a shift from a T-helper type 2 (Th2) cell response, which promotes allergy, to a T-regulatory (Treg) cell population, which inhibits the allergic inflammatory response through the production of immunosuppressive cytokines interleukin 10 and transforming growth factor β, which play pivotal roles in suppressing the allergic reaction. In a series of previous in vitro and in vivo experiments, we have demonstrated the capacity of synthetic methylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotide (ODN) moieties as well as methylated genomic DNA ODN motifs from Bifidobacterium longum subspecies infantis to activate Treg cell differentiation in contrast to the unmethylated ODN moiety, which promotes proinflammatory responses driven by Th17-mediated responses.

View Article and Find Full Text PDF

SPOCK2 controls the proliferation and function of immature pancreatic β-cells through MMP2.

Exp Mol Med

January 2025

Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland.

Human pluripotent stem cell-derived β-cells (SC-β-cells) represent an alternative cell source for transplantation in diabetic patients. Although mitogens could in theory be used to expand β-cells, adult β-cells very rarely replicate. In contrast, newly formed β-cells, including SC-β-cells, display higher proliferative capacity and distinct transcriptional and functional profiles.

View Article and Find Full Text PDF

Power-free plasma separation based on negative magnetophoresis for rapid biochemical analysis.

Microsyst Nanoeng

December 2024

Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.

We present a versatile platform for label-free magnetic separation of plasma, tailored to accommodate diverse environments. This innovative device utilizes an advanced long-short alternating double Halbach magnetic array, specifically engineered for optimal magnetic separation. The array's adaptability allows for seamless integration with separation channels of varying sizes, enabling static separation of whole blood.

View Article and Find Full Text PDF

Personalized Human Astrocyte-Derived Region-Specific Forebrain Organoids Recapitulate Endogenous Pathological Features of Focal Cortical Dysplasia.

Adv Sci (Weinh)

December 2024

Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, 200032, China.

Focal cortical dysplasia (FCD) is a highly heterogeneous neurodevelopmental malformation, the underlying mechanisms of which remain largely elusive. In this study, personalized dorsal and ventral forebrain organoids (DFOs/VFOs) are generated derived from brain astrocytes of patients with FCD type II (FCD II). The pathological features of dysmorphic neurons, balloon cells, and astrogliosis are successfully replicated in patient-derived DFOs, but not in VFOs.

View Article and Find Full Text PDF

Suboptimal spatial utilization and inefficient access to internal porosity preclude porous carbon cathodes from delivering high energy density in zinc-ion hybrid capacitors (ZIHCs). Inspired by the function of capillaries in biological systems, this study proposes a facile coordination-pyrolysis method to fabricate thin-walled hollow carbon nanofibers (CNFs) with optimized pore structure and surface functional groups for ZHICs. The capillary-like CNFs maximize the electrode/electrolyte interface area, facilitating the optimal utilization of energy storage sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!