Life-threatening increased intracranial pressure can be reversed by a variety of drugs. These compounds all have some disadvantages, producing rebound effects, severe coma or cardiovascular depression and electrolyte imbalance. However, reduction of intracranial pressure is a prerequisite for recovery and the benefits of treatment outweigh the risks. Dexamethasone is rapidly eliminated, the short half-life (about 3 hours) indicating that dosage intervals should be kept small. As yet, however, its therapeutic efficacy has not been clearly demonstrated. Therefore, an association between pharmacokinetics and pharmacodynamics cannot be established. Osmotic diuretics are the most widely used agents for reduction of intracranial pressure. Pharmacokinetics show a very close relationship to changes in serum osmolality, but there are large variations in the clearance. For the use of osmotics, the blood-brain barrier must be intact. Osmotic diuretics may lead to intracerebral oedema or to acute renal failure as serum osmolality increases. Considering the pharmacokinetics of each drug, and the dynamics of intracerebral pressure and osmolality, an intermittent, individually titrated dosage should be administered, with simultaneous monitoring of intracranial pressure. Frusemide (furosemide) can be used as an adjunct, to enhance the effect of osmotic diuretics. Its pharmacokinetics are limited by renal function, depending on age as well as on the extent of renal impairment. Altered renal elimination of concomitantly administered drugs, and electrolyte imbalances should be anticipated when diuretics are used. Barbiturates are certain to decrease intracranial pressure in humans by an as yet unknown mechanism. Their administration is recommended for patients that do not respond to conventional therapy. As barbiturates can result in deep coma, knowledge of their pharmacokinetics is of great importance for recovery. Following single doses, pentobarbitone has a relatively long elimination half-life (about 22 hours). However, after repeated administration for several days, its elimination may be enhanced due to autoinduction. Thiopentone kinetics are characterised by distribution and redistribution into deep peripheral compartments. Administration of high and frequent doses leads to considerably delayed recovery. This is not true for methohexitone, which shows comparable pharmacokinetics after single and multiple dose administration. Elimination depends on liver blood flow. Thus, recovery from methohexitone-coma is rapid. Rapid elimination is also an important characteristic of etomidate and alphaxalone/alphadolone, two non-barbiturate hypnotics.(ABSTRACT TRUNCATED AT 400 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2165/00003088-198713010-00001 | DOI Listing |
Alzheimers Dement
December 2024
Seattle University, Seattle, WA, USA.
Background: Cerebral amyloid angiopathy (CAA) and hypertension are the two most common risk factors of intracranial hemorrhage leading to cognitive impairment, but less is known about how the two relate. A better understanding of the association between these risk factors is a key step towards developing new strategies to manage hypertension and attenuate CAA progression.
Method: This study analyzed data from 2,510 participants in the National Alzheimer's Coordinating Center (NACC) dataset who had CAA and longitudinal blood pressure (BP) measurements before death.
Electrolyte Blood Press
December 2024
Department of Internal Medicine, College of Medicine, Dankook University, Republic of Korea.
Background: Elevated intracranial pressure (ICP) is a potentially life-threatening condition requiring prompt intervention. While both mannitol and hypertonic saline (HTS) are commonly used hyperosmotic agents for treating elevated ICP, there is insufficient evidence comparing their renal safety profiles and overall effectiveness. This study protocol outlines a pragmatic randomized trial to compare protocol-based 11.
View Article and Find Full Text PDFPhysiol Rep
January 2025
Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Bruxelles, Belgium.
The effect of acetazolamide on regional brain tissue oxygenation in patients with acute brain injury (ABI) is unknown. We studied adult patients with ABI who received acetazolamide as per the treating physician's decision and had ICP and brain oxygen pressure (PbtO) monitoring. Baseline measurements of ICP, cerebral perfusion pressure (CPP), and PbtO were taken before administering acetazolamide; subsequent measurements were recorded every 5 min for a total of 20 min.
View Article and Find Full Text PDFJ Exp Med
February 2025
Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO, USA.
Dysfunctional lymphatic drainage from the central nervous system (CNS) has been linked to neuroinflammatory and neurodegenerative disorders, but our understanding of the lymphatic contribution to CNS fluid autoregulation remains limited. Here, we studied forces that drive the outflow of the cerebrospinal fluid (CSF) into the deep and superficial cervical lymph nodes (dcLN and scLN) and tested how the blockade of lymphatic networks affects CNS fluid homeostasis. Outflow to the dcLN occurred spontaneously in the absence of lymphatic pumping and was coupled to intracranial pressure (ICP), whereas scLN drainage was driven by pumping.
View Article and Find Full Text PDFSurg Neurol Int
December 2024
Department of Anaesthesiology and Critical Care, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India.
Background: Propofol is one of the most used intravenous anesthetic agents in traumatic brain injury (TBI) patients undergoing emergency neurosurgical procedures. Despite being efficacious, its administration is associated with dose-related adverse effects. The use of adjuvants along with propofol aids in limiting its consumption, thereby mitigating the side effects related to propofol usage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!