A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Aging-related changes in cortical mechanisms supporting postural control during base of support and optic flow manipulations. | LitMetric

Aging-related changes in cortical mechanisms supporting postural control during base of support and optic flow manipulations.

Eur J Neurosci

The Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.

Published: December 2021

Behavioral findings suggest that aging alters the involvement of cortical sensorimotor mechanisms in postural control. However, corresponding accounts of the underlying neural mechanisms remain sparse, especially the extent to which these mechanisms are affected during more demanding tasks. Here, we set out to elucidate cortical correlates of altered postural stability in younger and older adults. 3D body motion tracking and high-density electroencephalography (EEG) were measured while 14 young adults (mean age = 24 years, 43% women) and 14 older adults (mean age = 77 years, 50% women) performed a continuous balance task under four different conditions. Manipulations were applied to the base of support (either regular or tandem (heel-to-toe) stance) and visual input (either static visual field or dynamic optic flow). Standing in tandem, the more challenging position, resulted in increased sway for both age groups, but for the older adults, only this effect was exacerbated when combined with optic flow compared to the static visual display. These changes in stability were accompanied by neuro-oscillatory modulations localized to midfrontal and parietal regions. A cluster of electro-cortical sources localized to the supplementary motor area showed a large increase in theta spectral power (4-7 Hz) during tandem stance, and this modulation was much more pronounced for the younger group. Additionally, the older group displayed widespread mu (8-12 Hz) and beta (13-30 Hz) suppression as balance tasks placed more demands on postural control, especially during tandem stance. These findings may have substantial utility in identifying early cortical correlates of balance impairments in otherwise healthy older adults.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ejn.15004DOI Listing

Publication Analysis

Top Keywords

older adults
16
postural control
12
optic flow
12
base support
8
cortical correlates
8
static visual
8
tandem stance
8
older
5
adults
5
aging-related changes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!