Purpose: Overnight admission following anterior cruciate ligament reconstruction has implications on clinical outcomes as well as cost benefit, yet there are few validated risk calculators for reliable identification of appropriate candidates. The purpose of this study is to develop and validate a machine learning algorithm that can effectively identify patients requiring admission following elective anterior cruciate ligament (ACL) reconstruction.

Methods: A retrospective review of a national surgical outcomes database was performed to identify patients who underwent elective ACL reconstruction from 2006 to 2018. Patients admitted overnight postoperatively were identified as those with length of stay of 1 or more days. Models were generated using random forest (RF), extreme gradient boosting (XGBoost), linear discriminant classifier (LDA), and adaptive boosting algorithms (AdaBoost), and an additional model was produced as a weighted ensemble of the four final algorithms.

Results: Overall, of the 4,709 patients included, 531 patients (11.3%) required at least one overnight stay following ACL reconstruction. The factors determined most important for identification of candidates for inpatient admission were operative time, anesthesia type, age, gender, and BMI. Smoking history, history of COPD, and history of coagulopathy were identified as less important variables. The following factors supported overnight admission: operative time > 200 min, age < 35.8 or > 53.5 years, male gender, BMI < 25 or > 31.2 kg/m, positive smoking history, history of COPD and the presence of preoperative coagulopathy. The ensemble model achieved the best performance based on discrimination assessed via internal validation (AUC = 0.76), calibration, and decision curve analysis. The model was integrated into a web-based open-access application able to provide both predictions and explanations.

Conclusion: Modifiable risk factors identified by the model such as increased BMI, operative time, anesthesia type, and comorbidities can help clinicians optimize preoperative status to prevent costs associated with unnecessary admissions. If externally validated in independent populations, this algorithm could use these inputs to guide preoperative screening and risk stratification to identify patients requiring overnight admission for observation following ACL reconstruction.

Level Of Evidence: IV.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00167-020-06321-wDOI Listing

Publication Analysis

Top Keywords

identify patients
16
anterior cruciate
12
cruciate ligament
12
overnight admission
12
machine learning
8
admission anterior
8
ligament reconstruction
8
patients requiring
8
acl reconstruction
8
admission operative
8

Similar Publications

Background: Social media has become a widely used way for people to share opinions about health care and medical topics. Social media data can be leveraged to understand patient concerns and provide insight into why patients may turn to the internet instead of the health care system for health advice.

Objective: This study aimed to develop a method to investigate Reddit posts discussing health-related conditions.

View Article and Find Full Text PDF

Background: Patient recruitment and data management are laborious, resource-intensive aspects of clinical research that often dictate whether the successful completion of studies is possible. Technological advances present opportunities for streamlining these processes, thus improving completion rates for clinical research studies.

Objective: This paper aims to demonstrate how technological adjuncts can enhance clinical research processes via automation and digital integration.

View Article and Find Full Text PDF

Background: While expert optometrists tend to rely on a deep understanding of the disease and intuitive pattern recognition, those with less experience may depend more on extensive data, comparisons, and external guidance. Understanding these variations is important for developing artificial intelligence (AI) systems that can effectively support optometrists with varying degrees of experience and minimize decision inconsistencies.

Objective: The main objective of this study is to identify and analyze the variations in diagnostic decision-making approaches between novice and expert optometrists.

View Article and Find Full Text PDF

The most significant progress in addressing the HIV/AIDS epidemic has been the development of antiretroviral therapy (ART). However, ensuring a high degree of treatment adherence is necessary to prevent resistance and disease progression. We conducted a cross-sectional study to evaluate adherence to ART through the calculation of the medication possession ratio (MPR) and to identify risk factors for suboptimal adherence in a cohort of HIV-positive patients receiving care at a Colombian healthcare institution across 16 cities.

View Article and Find Full Text PDF

Many nurses and allied professionals (NAPs) lack the skills, knowledge and confidence to engage in conducting and implementing research. This statement describes the importance of NAPs' involvement in clinical research within the context of cardiovascular care. The existing gaps, barriers and enablers to NAPs involvement in research as a potential response to workforce issues in these professions as well as to contribute to excellence in patient care delivery and associated outcomes are identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!