Despite the potential of learning analytics for personalized learning, it is seldom used to support collaborative learning particularly in face-to-face (F2F) learning contexts. This study uses learning analytics to develop a dashboard system that provides adaptive support for F2F collaborative argumentation (FCA). This study developed two dashboards for students and instructors, which enabled students to monitor their FCA process through adaptive feedback and helped the instructor provide adaptive support at the right time. The effectiveness of the dashboards was examined in a university class with 88 students (56 females, 32 males) for 4 weeks. The dashboards significantly improved the FCA process and outcomes, encouraging students to actively participate in FCA and create high-quality arguments. Students had a positive attitude toward the dashboard and perceived it as useful and easy to use. These findings indicate the usefulness of learning analytics dashboards in improving collaborative learning through adaptive feedback and support. Suggestions are provided on how to design dashboards for adaptive support in F2F learning contexts using learning analytics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539901PMC
http://dx.doi.org/10.1016/j.compedu.2020.104041DOI Listing

Publication Analysis

Top Keywords

learning analytics
20
adaptive support
16
learning
10
analytics dashboards
8
dashboards adaptive
8
collaborative argumentation
8
collaborative learning
8
f2f learning
8
learning contexts
8
support f2f
8

Similar Publications

In Internet of Things (IoT) networks, identifying the primary Medium Access Control (MAC) layer protocol which is suited for a service characteristic is necessary based on the requirements of the application. In this paper, we propose Energy Efficient and Group Priority MAC (EEGP-MAC) protocol using Hybrid Q-Learning Honey Badger Algorithm (QL-HBA) for IoT Networks. This algorithm employs reinforcement agents to select an environment based on predefined actions and tasks.

View Article and Find Full Text PDF

In-band full-duplex communication has the potential to double the wireless channel capacity. However, how to efficiently transform the full-duplex gain at the physical layer into network throughput improvement is still a challenge, especially in dynamic communication environments. This paper presents a reinforcement learning-based full-duplex (RLFD) medium access control (MAC) protocol for wireless local-area networks (WLANs) with full-duplex access points.

View Article and Find Full Text PDF

Although conservative treatment is commonly used for osteoporotic vertebral fracture (OVF), some patients experience functional disability following OVF. This study aimed to develop prediction models for new-onset functional impairment following admission for OVF using machine learning approaches and compare their performance. Our study consisted of patients aged 65 years or older admitted for OVF using a large hospital-based database between April 2014 and December 2021.

View Article and Find Full Text PDF

Predicting lack of clinical improvement following varicose vein ablation using machine learning.

J Vasc Surg Venous Lymphat Disord

December 2024

Department of Surgery, University of Toronto, Canada; Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, Canada; Institute of Medical Science, University of Toronto, Canada; Temerty Centre for Artificial Intelligence Research and Education in Medicine (T-CAIREM), University of Toronto, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Canada; Department of Surgery, King Faisal Specialist Hospital and Research Center, Saudi Arabia. Electronic address:

Objective: Varicose vein ablation is generally indicated in patients with active/healed venous ulcers. However, patient selection for intervention in individuals without venous ulcers is less clear. Tools that predict lack of clinical improvement (LCI) following vein ablation may help guide clinical decision-making but remain limited.

View Article and Find Full Text PDF

Digital phenotyping from heart rate dynamics: Identification of zero-poles models with data-driven evolutionary learning.

Comput Biol Med

December 2024

Complex Systems Laboratory, University Politehnica of Bucharest, Bucharest, Romania; Centre for Elderly and Nursing Home Medicine, University of Bergen, Bergen, Norway; Neuro-SysMed Center, University of Bergen, Bergen, Norway. Electronic address:

Heart rate response to physical activity is widely investigated in clinical and training practice, as it provides information on a person's physical state. For emerging digital phenotyping approaches, there is a need for individualized model estimation. In this study, we propose a zero-poles model and a data-driven evolutionary learning method for identification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!