Impact of cold plasma processing on major peanut allergens.

Sci Rep

School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Cathal Brugha Street, Dublin 1, Republic of Ireland.

Published: October 2020

Cold plasma is emerging as a novel food processing technology, with demonstrated efficacies for microbial inactivation and residual chemical dissipation of food products. Given the technology's multimodal action it has the potential to reduce allergens in foods, however data on the efficacy and mechanisms of action are sparse. This study investigates the efficacy of cold plasma on major peanut allergens (Ara h 1 and Ara h 2). For this purpose, dry, whole peanut (WP) and defatted peanut flour (DPF) were subjected to an atmospheric air discharge using a pin to plate cold plasma reactor for different treatment durations. With increases in plasma exposure, SDS-PAGE analysis revealed reduced protein solubility of the major peanut allergens. Alterations in allergenicity and structure of Ara h 1 and Ara h 2 were examined using ELISA and circular dichroism (CD) spectroscopy. Competitive ELISA with proteins purified from plasma treated WP or DPF revealed reduced antigenicity for both Ara h 1 and Ara h 2. The highest reduction in antigenicity was 65% for Ara h 1 and 66% Ara h 2 when purified from DPF. Results from CD spectroscopy analysis of purified proteins strongly suggests the reduction in antigenicity is due to modifications in the secondary structure of the allergens induced by plasma reactive species. Cold plasma is effective at reducing peanut protein solubility and causes changes in allergen structure leading to reduced antigenicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7550356PMC
http://dx.doi.org/10.1038/s41598-020-72636-wDOI Listing

Publication Analysis

Top Keywords

cold plasma
20
major peanut
12
peanut allergens
12
ara ara
12
plasma
8
ara
8
revealed reduced
8
protein solubility
8
reduced antigenicity
8
reduction antigenicity
8

Similar Publications

Calcium ions (Ca) are important second messengers and are known to participate in cold signal transduction. In the current study, we characterized a Ca-binding protein gene, VamCP1, from the extremely cold-tolerant grape species Vitis amurensis. VamCP1 expression varied among organs but was highest in leaves following cold treatment, peaking 24 h after treatment onset.

View Article and Find Full Text PDF

Background: During orthotopic liver transplantation, allograft reperfusion is a dynamic point in the operation and often requires vasoactive medications and blood transfusions. Normothermic machine perfusion (NMP) of liver allografts has emerged to increase the number of transplantable organs and may have utility during donation after circulatory death (DCD) liver transplantation in reducing transfusion burden and vasoactive medication requirements.

Methods: This is a single-center retrospective study involving 226 DCD liver transplant recipients who received an allograft transported with NMP (DCD-NMP group) or with static cold storage (DCD-SCS group).

View Article and Find Full Text PDF

This study examined the energy-dependent physiological responses, including stress, innate immune, and antioxidant systems, as well as indicators of energy mobilization, in pacu (Piaractus mesopotamicus) exposed to intermittent cold, aiming to assess the correlations between these responses. The fish were acclimated to 28 °C, divided into two groups, a control group maintained at 28 °C, and another exposed to 16 °C for two 24 h periods with a 5-day interval between them. The fish were sampled at six time points: baseline (after acclimatization to 28 °C), 24 h after the 1st exposure to 16 °C, after 5 days of recovery at 28 °C, 24 h after the 2nd exposure to 16 °C, and after 24 and 48 h of recovery at 28 °C.

View Article and Find Full Text PDF

Osseointegration is a crucial property of biomaterials used for bone defect repair. While titanium is the gold standard in craniofacial surgeries, various polymeric biomaterials are being explored as alternatives. However, polymeric materials can be bioinert, hindering integration with surrounding tissues.

View Article and Find Full Text PDF

The impact of atmospheric cold plasma (ACP) treatment (at 50 and 60 kV for 5 and 10 min) on nutritional (total phenolic and flavonoids contents, antioxidant capacity, and TBARs) and antinutritional (saponin and phytic acid) characteristics of quinoa grains has been investigated at this study. Results indicated that ACP treatment is significantly effective to reduce the antinutritional compounds compared with the control sample ( ≤ 0.05), among which S (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!