Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Taxanes are microtubule-targeting drugs used as cytotoxic chemotherapy to treat most solid tumors. The development of resistance to taxanes is a major cause of therapeutic failure and overcoming chemoresistance remains an important challenge to improve patient's outcome. Extensive efforts have been made recently to identify predictive biomarkers to select populations of patients who will benefit from taxane-based chemotherapy and avoid inefficient treatment of patients with innate resistance. This, together with the discovery of new mechanisms of resistance that include metabolic reprogramming and dialogue between tumor and its microenvironment, pave the way to a new era of personalized medicine. In this review, we recapitulate recent insights into taxane resistance and present promising emerging strategies to overcome chemoresistance in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molmed.2020.09.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!