A study of light-induced stomatal response in Arabidopsis using thermal imaging.

Biochem Biophys Res Commun

Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Kraków, Poland.

Published: December 2020

AI Article Synopsis

  • Researchers used thermal imaging to investigate how Arabidopsis thaliana leaves react to sudden heating caused by intense light, comparing wild type and ost1-2 mutant plants.
  • In the ost1-2 mutant, an initial rapid rise in leaf temperature was noted, resulting in a longer thermal time constant due to its poor stomatal regulation, leading to higher transpiration.
  • The study highlights the effectiveness of infrared thermography as a quick diagnostic tool for identifying light stress in plants exposed to excessive light conditions.

Article Abstract

Thermal imaging was used to study the early stage response to light-induced heating of Arabidopsis thaliana leaves. Time-series thermograms provided a spatial and temporal characterization of temperature changes in Arabidopsis wild type and the ost1-2 mutant rosettes exposed to excessive illumination. The initial response to high light, defined by the exponential increase in leaf temperature of ost1-2 gave an increased thermal time constant compared to wild type plants. The inability to regulate stomata in ost1-2 resulted in enhanced stomatal conductance and transpiration rate. Under strong irradiation, a significant decline in the efficiency of photosystem II was observed. This study evaluates infrared thermography kinetics and determines thermal time constants in particular, as an early and rapid method for diagnosing the prime indicators of light stress in plants under excessive light conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2020.09.020DOI Listing

Publication Analysis

Top Keywords

thermal imaging
8
wild type
8
thermal time
8
study light-induced
4
light-induced stomatal
4
stomatal response
4
response arabidopsis
4
thermal
4
arabidopsis thermal
4
imaging thermal
4

Similar Publications

Image-guided Interventions for Core Muscle Injury and Other Disorders in the Pubic Symphysis.

Radiographics

February 2025

Department of Medical Imaging, The Ottawa Hospital, 501 Smyth Rd, Ottawa, ON, Canada K1H 8L6 (D.V.F., J.L.); Department of Radiology, Radiation Oncology and Medical Physics, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada (D.V.F., J.L.); Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (D.V.F., J.L.); and Department of Radiology, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada (T.M.).

Formerly termed or , core muscle injury (CMI) encompasses abnormality of structures within the so-called core, which is essentially the hip, abdomen, and pubis. Compared with data on image-guided procedures of other joints, information regarding procedures performed to address CMI and other disorders of the pubic symphysis is lacking. These procedures can be daunting given the joint's small size, surrounding critical neurovascular structures, and three-dimensional anatomy.

View Article and Find Full Text PDF

With the progress of atherosclerosis (AS), the arterial lumen stenosis and compact plaque structure, the thickening intima and the narrow gaps between endothelial cells significantly limit the penetration efficiency of nanoprobe to plaque, weakening the imaging sensitivity and therapy efficiency. Thus, in this study, a HO-NIR dual-mode nanomotor, Gd-doped mesoporous carbon nanoparticles/Pt with rapamycin (RAPA) loading and AntiCD36 modification (Gd-MCNs/Pt-RAPA-AC) was constructed. The asymmetric deposition of Pt on Gd-MCNs catalyzed HO at the inflammatory site to produce O, which could promote the self-motion of the nanomotor and ease inflammation microenvironment of AS plaque.

View Article and Find Full Text PDF

Devices with a highly nonlinear resistance-voltage relationship are candidates for neuromorphic computing, which can be achieved by highly temperature dependent processes like ion migration. To explore the thermal properties of such devices, Scanning Thermal Microscopy (SThM) can be employed. However, due to the nonlinearity, the high resolution and quantitative method of AC-modulated SThM cannot readily be used.

View Article and Find Full Text PDF

Estimating in vivo power deposition density in thermotherapies based on ultrasound thermal strain imaging.

J Acoust Soc Am

January 2025

Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

In thermal therapies, accurate estimation of in-tissue power deposition density (PDD) is essential for predicting temperature distributions over time or regularizing temperature imaging. Based on our previous work on ultrasound thermometry, namely, multi-thread thermal strain imaging (MT-TSI), this work develops an in vivo PDD estimation method. Specifically, by combining the TSI model infinitesimal echo strain filter with the bio-heat transfer theory (the Pennes equation), a finite-difference time-domain model is established to allow online extraction of the PDD.

View Article and Find Full Text PDF

Insights into the electroactive impact of magnetic nanostructures in PVDF composites small-angle neutron scattering.

Nanoscale

January 2025

Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal.

Poly(vinylidene fluoride) (PVDF) is technologically relevant due to its thermal stability; chemical, mechanical and radiation resistance; transparency; biocompatibility; and ease of processing. Several of those applications are related to its high electroactivity, for which the β-phase of the polymer is its most renowned protagonist. In this context, extensive research has been conducted on the crystallization of PVDF in the β-phase, when processed from melt and from solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!