Synonymous codon usage significantly impacts translational and transcriptional efficiency, gene expression, the secondary structure of both mRNA and proteins, and has been implicated in various diseases. However, population-specific differences in codon usage biases remain largely unexplored. Here, we present a web server, https://cubap.byu.edu, to facilitate analyses of codon usage biases across populations (CUBAP). Using the 1000 Genomes Project, we calculated and visually depict population-specific differences in codon frequencies, codon aversion, identical codon pairing, co-tRNA codon pairing, ramp sequences, and nucleotide composition in 17,634 genes. We found that codon pairing significantly differs between populations in 35.8% of genes, allowing us to successfully predict the place of origin for African and East Asian individuals with 98.8% and 100% accuracy, respectively. We also used CUBAP to identify a significant bias toward decreased CTG pairing in the immunity related GTPase M (IRGM) gene in East Asian and African populations, which may contribute to the decreased association of rs10065172 with Crohn's disease in those populations. CUBAP facilitates in-depth gene-specific and codon-specific visualization that will aid in analyzing candidate genes identified in genome-wide association studies, identifying functional implications of synonymous variants, predicting population-specific impacts of synonymous variants and categorizing genetic biases unique to certain populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641757PMC
http://dx.doi.org/10.1093/nar/gkaa863DOI Listing

Publication Analysis

Top Keywords

codon usage
16
usage biases
12
codon pairing
12
codon
9
biases populations
8
population-specific differences
8
differences codon
8
populations cubap
8
east asian
8
synonymous variants
8

Similar Publications

Synechococcus is a significant primary producer in the oceans, coexisting with cyanophages, which are important agents of mortality. Bacterial resistance against phage infection is a topic of significant interest, yet little is known for ecologically relevant systems. Here we use exogenous gene expression and gene disruption to investigate mechanisms underlying intracellular resistance of marine Synechococcus WH5701 to the Syn9 cyanophage.

View Article and Find Full Text PDF

Predicting gene sequences with AI to study codon usage patterns.

Proc Natl Acad Sci U S A

January 2025

Department of Computer Science, University of Haifa, Haifa 3303221, Israel.

Selective pressure acts on the codon use, optimizing multiple, overlapping signals that are only partially understood. We trained AI models to predict codons given their amino acid sequence in the eukaryotes and and the bacteria and to study the extent to which we can learn patterns in naturally occurring codons to improve predictions. We trained our models on a subset of the proteins and evaluated their predictions on large, separate sets of proteins of varying lengths and expression levels.

View Article and Find Full Text PDF

Human Riboviruses: A Comprehensive Study.

J Mol Evol

December 2024

Department of Zoology, Hansraj College, University of Delhi, Mahatma Hansraj Marg, Malkaganj, Delhi, 110007, India.

The urgency to understand the complex interactions between viruses, their animal reservoirs, and human populations has been necessitated by the continuous spread of zoonotic viral diseases as evidenced in epidemics and pandemics throughout human history. Riboviruses are involved in some of the most prevalent human diseases, responsible for causing epidemics and pandemics. These viruses have an animal origin and have been known to cross the inter-species barrier time and time again, eventually infecting human beings.

View Article and Find Full Text PDF
Article Synopsis
  • Fleas significantly affect human and animal health worldwide, prompting a study on the complete mitochondrial genomes of two species: Paradoxopsyllus custodis and Stenischia montanis yunlongensis.
  • The genomes measured 15,375 bp and 15,651 bp, containing 37 genes, with an observable preference for AT nucleotide combinations and unique coding features, including incomplete stop codons.
  • Phylogenetic analysis indicated a paraphyletic relationship within the Leptopsyllidae family, providing insights into the mitochondrial genome and beneficial genetic markers for identifying and classifying fleas in the Siphonaptera order.
View Article and Find Full Text PDF

Natural selection shapes codon usage and host adaptation of NS1 in mosquito-borne pathogenic flaviviruses.

Int J Biol Macromol

December 2024

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China. Electronic address:

The NS1 protein of nine mosquito-borne flaviviruses, including Dengue virus 1-4, Japanese encephalitis virus, West Nile virus, Yellow fever virus, Tembusu virus, and Zika virus, shows distinct codon usage and evolutionary traits. Codon usage analysis shows notable base composition bias and non-conservatism in NS1, with distinct evolutionary traits from its ORF. Analysis of relative synonymous codon usage (RSCU) indicates that the NS1 genes exhibit non-conservative RSCU patterns within different mosquito-borne pathogenic flaviviruses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!