Objective: To determine how increased excitability from subthreshold currents would alter neural activity as it propagates through the subthreshold currents.
Approach: Experiments were performed on two Romney cross-breed sheep in vivo, by applying subthreshold currents either at the stimulus site or between the stimulus and recording sites. Neural recordings were obtained from nerve cuff implanted on the peroneal or sciatic nerve branches, while stimulus was applied to either the peroneal nerve or pins placed through the lower hindshank.
Main Results: Showed that subthreshold currents applied to the same site as stimulus increased excitation of underlying nerve fibres (p < 0.005). With stimulus and subthreshold currents applied to different sites on the peroneal nerve, the primary compound action potential (CAP) in the sciatic displayed a temporal shift of -2.5 to -3 µs which agreed with changes observed in the CAP waveform (p > 0.05).
Significance: These findings contribute to the understanding of mechanisms in myelinated fibres of subthreshold current neuromodulation therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6579/abc01f | DOI Listing |
Adv Mater
January 2025
Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
Van der Waals (vdW) dielectrics are extensively employed to enhance the performance of 2D electronic devices. However, current vdW dielectric materials still encounter challenges such as low dielectric constant (κ) and difficulties in synthesizing high-quality single crystals. 2D rare-earth oxyhalides (REOXs) with exceptional electrical properties present an opportunity for the exploration of novel high-κ dielectrics.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department Neurology, Upper Silesian Medical Center named After Prof. Leszek Giec, ul. Ziołowa 45/47, 40-635 Katowice, Poland.
Lower back pain (LBP) is a common condition affecting primarily populations in developed countries, placing a significant burden on public health systems around the world. A high rate of pain recurrence increases the risk of developing a chronic syndrome and the occurrence of complex psychosocial and professional problems. Symptoms lasting longer than 12 weeks are associated with the risk of sleep problems, depression, and anxiety.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of IT Semiconductor Convergence Engineering, Research Institute of Advanced Convergence Technology, Tech University of Korea, Siheung 15073, Republic of Korea.
The increasing demand for advanced transparent and flexible display technologies has led to significant research in thin-film transistors (TFTs) with high mobility, transparency, and mechanical robustness. In this study, we fabricated all-transparent TFTs (AT-TFTs) utilizing amorphous indium-zinc-tin-oxide (a-IZTO) as a dual-functional material for both the channel layer and transparent conductive electrodes (TCEs). The a-IZTO was deposited using radio-frequency magnetron sputtering, with its composition adjusted for both channel and electrode functionality.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia.
In modern ICs, sub-threshold voltage management plays a significant role due to its perspective on energy efficiency and speed performance. Level shifters (LSs) play a critical role in signal exchange among multiple voltage domains by ensuring signal integrity and the reliable operation of ICs. In this article, a Pass-Transistor-Enabled Split Input Voltage Level Shifter (PVLS) is designed for area, delay, and power-efficient applications with a wide voltage conversion range.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
High-Power Converter Systems (HLU), Technical University of Munich (TUM), 80333 Munich, Germany.
Gate dielectrics are essential components in nanoscale field-effect transistors (FETs), but they often face significant instabilities when exposed to harsh environments, such as radioactive conditions, leading to unreliable device performance. In this paper, we evaluate the performance of ultrascaled transition metal dichalcogenide (TMD) FETs equipped with vacuum gate dielectric (VGD) as a means to circumvent oxide-related instabilities. The nanodevice is computationally assessed using a quantum simulation approach based on the self-consistent solutions of the Poisson equation and the quantum transport equation under the ballistic transport regime.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!