A fraction of organic carbon (OC) is found to exhibit the capability to absorb solar radiation. However, the absorption properties of OC remain poorly characterized partly due to uncertainties in determination methods. In this study, the absorption coefficient (b) of OC (b) in Beijing during a polluted winter was estimated on the basis of the combined measurements of black carbon (BC) size distribution and total aerosol b (b). The bare BC b (b) calculated using Mie theory on the basis of measured size distribution exhibited weak wavelength dependence, with a mean absorption Ångström exponent (AAE) of 0.56 ± 0.04 within the 470-660 nm wavelength range, which was lower than the value of 1 commonly used for freshly emitted BC. The calculated b was compared with b at 950 nm to derive the coating thickness of BC, from which the calculation of coated BC b (b) within 370-660 nm was based using the core-shell Mie model. Given the thick coatings, the AAE of coated BC, with a mean of 0.53 ± 0.12, was slightly lower than that of bare BC. Subsequently, b was obtained by subtracting b from b, accounting for 59.57 ± 4.82% of b at 370 nm on average. The average mass absorption efficiency of OC was estimated to be 1.48 ± 0.36 m g at 370 nm. b significantly decreased as wavelength increased, deriving an AAE of OC with a mean of 2.72 ± 0.32 within the 370-660 nm range. The level of b estimated on the basis of a widely used attribution method assuming a constant BC AAE of 1 was ~60% lower than the currently presented value, probably underestimating OC radiative effect by a factor of >3. More accurate estimations of b based on more advanced measurements and suitable theory calculations are recommended to provide more reliable assessments of OC radiative effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.142600 | DOI Listing |
J Fluoresc
January 2025
Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
This study investigates the electronic properties and photovoltaic (PV) performance of newly designed bithiophene-based dyes, focusing on their light harvesting efficiency (LHE), open-circuit voltage (V), fill factor (FF), and short-circuit current density (J).These new dyes are designed with the help of machine learning (ML) to design best donor acceptor designs. For this, we collect 2567 differenr electron donor groups and calculated their bandgap with the help of Random Forest (RF) Regression method.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Physics \ Collage of Sciences, University of Kufa, Najaf, Iraq.
This research utilizes density functional theory to investigate the ground and excited-state properties of a new series of organic dyes with D-π-A configurations (D1-D6) for their potential application in dye-sensitized solar cells. The study focuses on modifying these dyes using various functional groups as π-bridges to optimize their electronic properties and improve their efficiency as sensitizers in DSSCs. The frontier molecular orbitals (HOMO and LUMO) were analysed to evaluate electron transfer properties.
View Article and Find Full Text PDFLuminescence
January 2025
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China.
Currently, the development of red Mn-activated fluoride luminescent materials attracts a lot of attention in optical thermometry sensors, solid lighting, display, and plant growth areas. Nevertheless, the thermal stability of Mn-activated fluoride luminescent materials is still a crucial issue. Herein, a new red RbNaVF:Mn luminescent material with outstanding thermal stability was successfully synthesized through the facial coprecipitation method.
View Article and Find Full Text PDFSmall Methods
January 2025
National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
Exploring potential third-order nonlinear optical (NLO) materials attracts ever-increasing attention. Given that the atomically precise and rich adjustable structural features of silver nanoclusters (Ag NCs), as well as the unique π-electron conjugated system of carbon-based nanomaterials, a supramolecular co-assembly amplification strategy to enhance the luminescent intensity and NLO performance of the hybrids of the two components, are constructed and the relationship between structures and optical properties are investigated. By combining water soluble Ag NCs [(NH)[Ag(mna)] (Hmna = 2-mercaptonicotinic acid, abbreviated to Ag─NCs hereafter) containing uncoordinated carboxyl groups with water-soluble fullerene derivatives modified with multiple hydroxyl groups (fullerenols, C─OH), the π-electron delocalization is expanded owing to non-covalent hydrogen bonding effect between Ag6─NCs and C─OH, which provides a feasible basis for realizing the NLO response.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electronics and Communication Engineering, SRM University, Guntur 522240, Andhra Pradesh, India.
We propose herein a metamaterial (MM) dual-band THz sensor for various biomedical sensing applications. An MM is a material engineered to have a particular property that is rarely observed in naturally occurring materials with an aperiodic subwavelength arrangement. MM properties across a wide range of frequencies, like high sensitivity and quality factors, remain challenging to obtain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!