A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Simultaneous removal of nitrogen and dimethyl phthalate from low-carbon wastewaters by using intermittently-aerated constructed wetlands. | LitMetric

Simultaneous removal of nitrogen and dimethyl phthalate from low-carbon wastewaters by using intermittently-aerated constructed wetlands.

J Hazard Mater

College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Department of Bioscience, Aarhus University, Aarhus 8000C, Denmark. Electronic address:

Published: February 2021

Phthalic acid esters (PAEs) such as dimethyl phthalate (DMP) have been widely used as a plasticizer in society, which pose severe harm to human health. In this study, the potential of DMP elimination and nitrogen removal from low-carbon wastewaters by intermittently-aerated subsurface flow constructed wetlands (SSFCWs) was evaluated, and the effect of the influent DMP concentrations on nitrogen removal was also investigated. The results showed a better removal of DMP (88.5-97.8%) was obtained in CWs under different influent DMP concentrations, and the high removal of COD (86.7-95.0%) and NH-N (95.5-98.7%) was also achieved simultaneously. The maximum TN removal (48.7%) was observed at an influent DMP concentration of 10 mg L. Furthermore, the TN removal and DMP reduction had a good fitting relationship (R = 0.71) in CWs under different influent DMP concentrations. The analysis of DMP decomposition processes demonstrated that DMP was degraded into some smaller molecular fractions, and DMP degradation intermediates mainly including monomethyl phthalate (MMP) and phthalate (PA), which might provide a potential carbon source for the denitrification processes in CWs. These findings could contribute to a better understanding of DMP removal mechanism and provide useful guidance for the practical application of CWs for treating wastewater containing phthalates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.124130DOI Listing

Publication Analysis

Top Keywords

influent dmp
16
dmp
12
dmp concentrations
12
dimethyl phthalate
8
low-carbon wastewaters
8
wastewaters intermittently-aerated
8
constructed wetlands
8
nitrogen removal
8
removal dmp
8
cws influent
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!