Proteome analysis of virulent Aeromonas hydrophila reveals the upregulation of iron acquisition systems in the presence of a xenosiderophore.

FEMS Microbiol Lett

United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832 USA.

Published: November 2020

The Gram-negative bacterium, Aeromonas hydrophila, has been responsible for extensive losses in the catfish industry for over a decade. Due to this impact, there are ongoing efforts to understand the basic mechanisms that contribute to virulent A. hydrophila (vAh) outbreaks. Recent challenge models demonstrated that vAh cultured in the presence of the iron chelating agent deferoxamine mesylate (DFO) were more virulent to channel catfish (Ictalurus punctatus). Interestingly, differential gene expression of select iron acquisition genes was unremarkable between DFO and non-DFO cultures, posing the question: why the increased virulence? The current work sought to evaluate growth characteristics and protein expression of vAh after the addition of DFO. A comparative proteome analysis revealed differentially expressed proteins among tryptic soy broth (TSB) and TSB + DFO treatments. Upregulated proteins identified among the TSB + DFO treatment were enriched for gene ontology groups including iron ion transport, siderophore transport and siderophore uptake transport, all iron acquisition pathways. Protein-protein interactions were also evaluated among the differentially expressed proteins and predicted that many of the upregulated iron acquisition proteins likely form functional physiological networks. The proteome analysis of the vAh reveals valuable information about the basic biological processes likely leading to increased virulence during iron restriction in this organism.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsle/fnaa169DOI Listing

Publication Analysis

Top Keywords

iron acquisition
16
proteome analysis
12
aeromonas hydrophila
8
differentially expressed
8
expressed proteins
8
transport siderophore
8
iron
7
analysis virulent
4
virulent aeromonas
4
hydrophila reveals
4

Similar Publications

The mechanical properties of a final product are directly influenced by the solidification process, chemical composition heterogeneity, and the thermal variables during solidification. This study aims to analyze the influence of solidification thermal variables on the microstructure, hardness, and phase distribution of the CuMn11Al8Fe3Ni3. The alloy was directionally and upward solidified from a temperature of 1250 °C.

View Article and Find Full Text PDF

() is a Gram-negative, halophilic bacillus known for causing severe infections such as gastroenteritis, necrotizing fasciitis, and septic shock, with mortality rates exceeding 50% in high-risk individuals. Transmission occurs primarily through the consumption of contaminated seafood, exposure of open wounds to infected water, or, in rare cases, insect bites. The bacterium thrives in warm, brackish waters with high salinity levels, and its prevalence is rising due to the effects of climate change, including warming ocean temperatures and expanding coastal habitats.

View Article and Find Full Text PDF

The global incidence of serovar Schwarzengrund has risen in recent years. This serotype has been isolated from poultry, retail meat, and other food products, leading to multiple outbreaks. Alongside the increase in infections, there are growing concerns about the increasing levels of antimicrobial resistance (AMR) among Schwarzengrund strains.

View Article and Find Full Text PDF

Bacteriophage Treatment Induces Phenotype Switching and Alters Antibiotic Resistance of ESBL .

Antibiotics (Basel)

January 2025

Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis Str. 6, H-6725 Szeged, Hungary.

Bacteriophage therapy represents a promising strategy to combat multidrug-resistant pathogens, such as . In this study, we explored the effects of a bacteriophage infection on an Extended Spectrum Beta-Lactamase (ESBL) positive isolate. We used next generation sequencing, proteomics and phenotypic screens to investigate the effect of bacteriophage infections on metabolism and resistance phenotypes.

View Article and Find Full Text PDF

Gastric cancer continues to be a leading global health concern, with current therapeutic approaches requiring significant improvement. While the disruption of iron metabolism in the advancement of gastric cancer has been well-documented, the underlying regulatory mechanisms remain largely unexplored. Additionally, the complement C5a-C5aR pathway has been identified as a crucial factor in gastric cancer development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!