Sickle cell disease (SCD) is a common hereditary hematologic disorder. SCD patients suffer from acute vaso-occlusive episodes (VOEs), chronic organ damage, and premature death, with few therapeutic options. Although severe pain is a major clinical manifestation of SCD, it remains unknown whether nociception plays a role in SCD pathogenesis. To address this question, we generated nociceptor-deficient SCD mice and found, unexpectedly, that the absence of nociception led to more severe and more lethal VOE, indicating that somatosensory nerves protect SCD mice from VOE. Mechanistically, the beneficial effects of sensory nerves were induced by the neuropeptide calcitonin gene-related peptide (CGRP), which acted on hematopoietic cells. Additionally, oral capsaicin consumption, which can activate somatosensory nerves by binding to TRPV1, dramatically alleviated acute VOE and significantly prevented chronic liver and kidney damage in SCD mice. Thus, the manipulation of nociception may provide a promising approach to treat SCD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7534906 | PMC |
http://dx.doi.org/10.1084/jem.20200065 | DOI Listing |
Blood Cells Mol Dis
January 2025
Red Blood Cell Research Group, Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
Pyruvate kinase (PK), a key ATP-generating enzyme in glycolysis, is a target for novel sickle cell disease (SCD) therapies. Enhancing PK activity lowers 2,3-diphosphyglycerate (2,3-DPG), increases adenosine triphosphate (ATP), and may prevent red blood cell (RBC) sickling. Townes and Berkeley SCD mouse models are commonly used for the development of novel drugs for SCD, but differ from humans in 2,3-DPG and ATP levels, which could be related to underlying differences in PK properties.
View Article and Find Full Text PDFNat Commun
January 2025
Carisma Therapeutics Inc, Philadelphia, PA, USA.
We previously developed human CAR macrophages (CAR-M) and demonstrated redirection of macrophage anti-tumor function leading to tumor control in immunodeficient xenograft models. Here, we develop clinically relevant fully immunocompetent syngeneic models to evaluate the potential for CAR-M to remodel the tumor microenvironment (TME), induce T cell anti-tumor immunity, and sensitize solid tumors to PD1/PDL1 checkpoint inhibition. In vivo, anti-HER2 CAR-M significantly reduce tumor burden, prolong survival, remodel the TME, increase intratumoral T cell and natural killer (NK) cell infiltration, and induce antigen spreading.
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA.
Circulating mature red blood cells (RBCs) from patients and mice with sickle cell disease (SCD) abnormally retain mitochondria, a factor shown to contribute to the disease's pathobiology. To further understand the functional implications of RBC mitochondria retention in SCD, we used mitochondria inhibitors and metabolites/substrates from the tricarboxylic acid cycle, oxidative phosphorylation and glycolysis pathways (ADP, glutamate, malate, pyruvate, succinate or all metabolites combined) and examined RBC bioenergetics, reactive oxygen species (ROS) levels, calcium flux and hydration. In RBCs from sickle mice, mitochondria inhibition reduced ATP levels by 30%-60%, whereas control RBCs were unaffected.
View Article and Find Full Text PDFNutrients
December 2024
Department of Food Science and Nutrition, Kyungpook National University, 80 Daehak-ro, Buk-ku, Daegu 41566, Republic of Korea.
Long-term consumption of erythritol, a widely used sugar substitute, has been associated with increased risks of thrombosis and cardiometabolic diseases. In this study, we investigated the effects and mechanisms of allulose in mitigating these risks compared to erythritol using the clusterProfiler tool in R (version 4.12.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2024
Department of Orthopaedic Surgery and Traumatology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain.
: Chemical debridement is a fundamental step during the surgical treatment of both acute and chronic periprosthetic joint infection (PJI). However, there is no consensus on the optimal solution, nor is there sufficient evidence on the optimal irrigation time and combination of solutions. In an in vitro study, our group recently demonstrated that sequential combination debridement (SCD) with 3% acetic acid (AA) followed by 10% povidone iodine (PI) and 5 mM hydrogen peroxide (HO) was the best strategy for reducing bacterial load.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!