Early and accurate diagnosis of Coronavirus disease (COVID-19) is essential for patient isolation and contact tracing so that the spread of infection can be limited. Computed tomography (CT) can provide important information in COVID-19, especially for patients with moderate to severe disease as well as those with worsening cardiopulmonary status. As an automatic tool, deep learning methods can be utilized to perform semantic segmentation of affected lung regions, which is important to establish disease severity and prognosis prediction. Both the extent and type of pulmonary opacities help assess disease severity. However, manually pixel-level multi-class labelling is time-consuming, subjective, and non-quantitative. In this article, we proposed a hybrid weak label-based deep learning method that utilize both the manually annotated pulmonary opacities from COVID-19 pneumonia and the patient-level disease-type information available from the clinical report. A UNet was firstly trained with semantic labels to segment the total infected region. It was used to initialize another UNet, which was trained to segment the consolidations with patient-level information using the Expectation-Maximization (EM) algorithm. To demonstrate the performance of the proposed method, multi-institutional CT datasets from Iran, Italy, South Korea, and the United States were utilized. Results show that our proposed method can predict the infected regions as well as the consolidation regions with good correlation to human annotation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545170PMC
http://dx.doi.org/10.1109/JBHI.2020.3030224DOI Listing

Publication Analysis

Top Keywords

deep learning
12
hybrid weak
8
disease severity
8
pulmonary opacities
8
proposed method
8
severity consolidation
4
consolidation quantification
4
covid-19
4
quantification covid-19
4
covid-19 images
4

Similar Publications

Background: Comprehensive clinical data regarding factors influencing the individual disease course of patients with movement disorders treated with deep brain stimulation might help to better understand disease progression and to develop individualized treatment approaches.

Methods: The clinical core data set was developed by a multidisciplinary working group within the German transregional collaborative research network ReTune. The development followed standardized methodology comprising review of available evidence, a consensus process and performance of the first phase of the study.

View Article and Find Full Text PDF

AiGPro: a multi-tasks model for profiling of GPCRs for agonist and antagonist.

J Cheminform

January 2025

School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.

G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening.

View Article and Find Full Text PDF

Enhancing furcation involvement classification on panoramic radiographs with vision transformers.

BMC Oral Health

January 2025

Department of Periodontics, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Research Institute of Stomatology, Nanjing University, Nanjing, China.

Background: The severity of furcation involvement (FI) directly affected tooth prognosis and influenced treatment approaches. However, assessing, diagnosing, and treating molars with FI was complicated by anatomical and morphological variations. Cone-beam computed tomography (CBCT) enhanced diagnostic accuracy for detecting FI and measuring furcation defects.

View Article and Find Full Text PDF

Learning by making - student-made models and creative projects for medical education: systematic review with qualitative synthesis.

BMC Med Educ

January 2025

Department of Anatomy, Clinical Sciences Building, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308323, Singapore.

Study Objective: Student-centered learning and unconventional teaching modalities are gaining popularity in medical education. One notable approach involves engaging students in producing creative projects to complement the learning of preclinical topics. A systematic review was conducted to characterize the impact of creative project-based learning on metacognition and knowledge gains in medical students.

View Article and Find Full Text PDF

scSMD: a deep learning method for accurate clustering of single cells based on auto-encoder.

BMC Bioinformatics

January 2025

Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Background: Single-cell RNA sequencing (scRNA-seq) has transformed biological research by offering new insights into cellular heterogeneity, developmental processes, and disease mechanisms. As scRNA-seq technology advances, its role in modern biology has become increasingly vital. This study explores the application of deep learning to single-cell data clustering, with a particular focus on managing sparse, high-dimensional data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!