Tomato yellow leaf curl virus (TYLCV), a monopartite begomovirus that originated in the eastern Mediterranean, has spread worldwide, becoming a serious threat to tomato ( L.) production. Southeast Asia is considered one of the hotspots for begomovirus diversity, and a wide variety of local begomovirus species distinct from TYLCV have been identified. In this study, the protection effect of introgressions of single TYLCV resistance genes, and , in tomato was examined against inoculations of the bipartite begomoviruses Tomato yellow leaf curl Kanchanaburi virus (TYLCKaV) and Pepper yellow leaf curl Indonesia virus (PepYLCIV) isolated from Indonesia. Our findings suggest that in the heterozygous state was found to be ineffective against PepYLCIV and TYLCKaV, whereas in the heterozygous state was effective against PepYLCIV and partially effective against TYLCKaV. Quantification of viral DNAs showed correlation between symptom expression and viral DNA accumulation. Moreover, mixed infections of TYLCKaV and PepYLCIV caused notably severe symptoms in tomato plants harboring . In cases of mixed infection, quantifying viral DNAs showed a relatively high accumulation of PepYLCIV, indicating that loses its effectiveness against PepYLCIV when TYLCKaV is also present. This study demonstrates the lack of effectiveness of resistance genes against single and mixed infections of distinct local begomoviruses from Southeast Asia.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-03-20-0613-REDOI Listing

Publication Analysis

Top Keywords

yellow leaf
16
leaf curl
16
tomato yellow
12
southeast asia
12
mixed infections
12
curl kanchanaburi
8
kanchanaburi virus
8
single mixed
8
resistance genes
8
heterozygous state
8

Similar Publications

Blue honeysuckle (Lonicera caerulea L.) has been widely used in food, medicine, health products, cosmetics, materials, and other products. Between September 2022 and September 2023, a leaf spot disease was observed on approximately 20% of blue honeysuckle plants of the 'Lanjingling' cultivar grown in a 0.

View Article and Find Full Text PDF

Vicia amoena is renowned for its high protein content and nutritional value, making it significant in animal production and traditional Chinese medicine production. In July 2023, typical anthracnose symptoms were observed on V. amoena leaves in Suihua City (125°82'E, 46°22'N), Heilongjiang Province, China, affecting approximately 40% of the plants (a total of 200 plants were surveyed).

View Article and Find Full Text PDF

Medicago2035: Genomes, Functional Genomics and Molecular Breeding.

Mol Plant

December 2024

College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:

Medicago, a member of the Leguminosae or Fabaceae family, encompasses the most significant forage crops globally, notably alfalfa (Medicago sativa L.). Its close diploid relative, Medicago truncatula, serves as an exemplary model plant for investigating leguminous growth and development, as well as its symbiosis with rhizobia.

View Article and Find Full Text PDF

Two phylogenetically unrelated viruses transmitted by different insect vectors, tomato spotted wilt virus (TSWV) and tomato yellow leaf curl virus (TYLCV), are major threats to tomato and other vegetable production. Although co-infections of TSWV and TYLCV on the same host plant have been reported on numerous occasions, there is still lack of research attempting to elucidate the mechanisms underlying the relationship between two viruses when they coexist in the same tomato or other plants. After assessing the effect of four TSWV-coded proteins on suppressing TYLCV in TSWV N transgenic Nicotiana benthamiana seedlings, the TSWV N protein proved to be effective in reducing TYLCV quantity and viral symptoms.

View Article and Find Full Text PDF

Introduction: Grapevine ( L.), one of the economically important fruit crops cultivated worldwide, harbours diverse endophytic bacteria (EBs) responsible for managing various fungal diseases. Anthracnose () (Penz.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!