The transformation of glycals into 2,3-unsaturated glycosyl derivatives, reported by Ferrier in 1962, is supposed to involve an α,β unsaturated glycosyl cation, an elusive ionic species that has still to be observed experimentally. Herein, while combination of TfOH and flow conditions failed to observe this ionic species, its extended lifetime in superacid solutions allowed its characterization by NMR-based structural analysis supported by DFT calculations. This allyloxycarbenium ion was further exploited in the Ferrier rearrangement to afford unsaturated nitrogen-containing C-aryl glycosides and C-alkyl glycosides under superacid and flow conditions, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202010175DOI Listing

Publication Analysis

Top Keywords

ferrier rearrangement
8
ionic species
8
flow conditions
8
insight ferrier
4
rearrangement combining
4
combining flash
4
flash chemistry
4
chemistry superacids
4
superacids transformation
4
transformation glycals
4

Similar Publications

This paper describes the synthesis of two 6-azido-6-deoxy derivatives of phosphatidylinositol (PI), which contained different fatty acid chains. These syntheses, starting from methyl α-d-glucopyranoside, employed multiple regioselective transformations with Ferrier rearrangement as one of the key steps. The PI derivatives contained different fatty acid chains in the lipids and an azido group in the inositol residue to facilitate their further functionalization under bioorthogonal conditions.

View Article and Find Full Text PDF

Electrochemical Ferrier Rearrangement of Glycals.

Org Lett

November 2024

Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131 Padova, Italy.

The Ferrier rearrangement (FR) is a well-documented reaction that relies on strong acids or oxidants to convert glycals into unsaturated glycosyl derivatives. In this work, we introduce an electrochemical variant of the FR, offering a broad substrate compatibility. Various nucleophiles and glycal derivatives afford 2,3-unsaturated glycosyl derivatives in high yields with excellent diastereoselectivities.

View Article and Find Full Text PDF

The Ferrier rearrangement was utilized to obtain 2,3-unsaturated diosgenyl glycosides. This reaction proceeded with high stereoselectivity, yielding mostly saponins with an α configuration (hexoses) or predominantly with a β configuration (pentoses). The diversity of the glycals used and the glycosides obtained enabled a deep discussion of the Ferrier rearrangement mechanism.

View Article and Find Full Text PDF

We herein reveal the possibility of the C-4 neighboring group/remote group participation (NGP/RGP) facilitating the stabilization of the anomeric center via dioxolenium intermediates in the chemoselective activation of glycal donors. We further realized that the configuration of the C-4 group in the galacto- and gluco-glycal series enables diverse pathways to give direct 1,2-addition or Ferrier rearrangement, respectively. A proof-of-principle for stereoselective glycosylation was amply illustrated by employing carbohydrates, amino acids, natural products, and bioactive molecules to develop 2-deoxy-glycan analogs.

View Article and Find Full Text PDF

Ferrier Glycosylation Mediated by the TEMPO Oxoammonium Cation.

J Org Chem

August 2024

Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico.

The TEMPO oxoammonium cation has been proven to be both an efficient oxidizing reagent and an electrophilic substrate frequently found in organic reactions. Here, we report that this versatile chemical reagent can also be used as an efficient promoter for C- and N-glycosylation reactions through a Ferrier rearrangement with moderate to high yields. This unprecedented reactivity is explained in terms of a Lewis acid activation of glycal by TEMPO forming a type of glycal-TEMPO mesomeric structure, which occurs through an extended vinylogous hyperconjugation toward the π* orbital [LP → π*, π* → σ*, and LP → π*].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!