The ability of a cationic coordination cage to encapsulate molecular guests is enhanced by non-covalent capping of the cage portals with tripodal anions. The capped cage provides new cation binding sites at the portals, which enable accommodation of cationic substrates within the cationic cage. In addition, non-covalent capping allows neutral guests in the cage to be exchanged for cationic ones on demand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.0c08835 | DOI Listing |
J Phys Chem C Nanomater Interfaces
January 2025
Institute of Physics, NAWI Graz, University of Graz, Universitätsplatz 5, 8010 Graz, Austria.
For weakly interacting adsorbate/substrate systems, the integer charge transfer (ICT) model describes how charge transfer across interfaces depends on the substrate work function. In particular, work function regimes where no charge transfer occurs (vacuum level alignment) can be distinguished from regions where integer charge transfer by electron tunneling from substrate to adsorbate or vice versa takes place (Fermi level pinning). While the formation of singly integer charged molecular anions and cations of organic semiconductors on various substrates has been well described by this model, the double integer charging regime has so far remained unexplored and experimentally elusive.
View Article and Find Full Text PDFFEBS J
January 2025
Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy.
The trimeric intracellular cation channel B (TRIC-B), encoded by TMEM38B, is a potassium (K) channel present in the endoplasmic reticulum membrane, where it counterbalances calcium (Ca) exit. Lack of TRIC-B activity causes a recessive form of the skeletal disease osteogenesis imperfecta (OI), namely OI type XIV, characterized by impaired intracellular Ca flux and defects in osteoblast (OB) differentiation and activity. Taking advantage of the OB-specific Tmem38b knockout mouse (Runx2Cre;Tmem38b; cKO), we investigated how the ion imbalance affects the osteogenetic process.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P. R. China.
Traditional natural polysaccharide-based hydrogels, when used as drug carriers, often struggle to maintain long-term stability in the extremely harsh gastric environment. This results in unstable drug release and significant challenges in bioavailability. To address this issue, this study utilized inexpensive and safe natural polysaccharides-chitosan (CS) and high methoxyl pectin (HM)-as raw materials.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Université de Lorraine and CNRS, LPCT, UMR 7019, F-54000 Nancy, France.
The efficient functioning of dye-sensitized solar cells (DSSCs) is governed by the interplay of three essential components: the semiconductor, the dye, and the electrolyte. While the impact of the electrolyte composition on the device's performance has been extensively studied in n-type DSSCs, much less is known about p-type-based devices. Here, we investigate the effect of potential-determining ions on the energetics and stability of dye-sensitized NiO surfaces by using electrochemical, ab initio molecular dynamics simulations, and ab initio electronic structure calculations.
View Article and Find Full Text PDFMetal oxides are promising catalysts for small molecule hydrogen chemistries, mediated by interfacial proton-coupled electron transfer (PCET) processes. Engineering the mechanism of PCET has been shown to control the selectivity of reduced products, providing an additional route for improving reductive catalysis with metal oxides. In this work, we present kinetic resolution of the rate determining proton-transfer step of PCET to a titanium-doped POV, TiVO(OCH) with 9,10-dihydrophenazine by monitoring the loss of the cationic radical intermediate using stopped-flow analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!