The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019 has triggered an ongoing global pandemic whereby infection may result in a lethal severe pneumonia-like disease designated as coronavirus disease 2019 (COVID-19). To date, millions of confirmed cases and hundreds of thousands of deaths have been reported worldwide, and there are currently no medical countermeasures available to prevent or treat the disease. The purported development of a vaccine could require at least 1-4 years, while the typical timeline from hit finding to drug registration of an antiviral is >10 years. Thus, repositioning of known drugs can significantly accelerate the development and deployment of therapies for COVID-19. To identify therapeutics that can be repurposed as SARS-CoV-2 antivirals, we developed and initiated a high-throughput cell-based screen that incorporates the essential viral papain-like protease (PLpro) and its peptide cleavage site into a luciferase complementation assay to evaluate the efficacy of known drugs encompassing approximately 15,000 clinical-stage or US Food and Drug Administration (FDA)-approved small molecules. Confirmed inhibitors were also tested to determine their cytotoxic properties. Here, we report the identification of four clinically relevant drugs that exhibit selective inhibition of the SARS-CoV-2 viral PLpro.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7550789PMC
http://dx.doi.org/10.1177/2472555220963667DOI Listing

Publication Analysis

Top Keywords

papain-like protease
8
high-throughput screening
4
drugs
4
screening drugs
4
drugs inhibit
4
inhibit papain-like
4
sars-cov-2
4
protease sars-cov-2
4
sars-cov-2 emergence
4
emergence severe
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!