The imbalance of intestinal microecology firstly impairs intestinal mucosa barrier and function, then further damages the functions and homeostasis of distal organs, leading to systemic diseases. Nutrients, transplantation of bacteria flora and modes of life can shape gut microbiota and intestinal mucosa barrier and mitigate stress. Current researches demonstrate that dynamic epigenetic modifications of intestinal tissue strongly mediate the crosstalk between gut microbes and gut mucosa barrier. and species can synthesize folate to increase DNA methylation and mRNA N6-methyladenosine (m6A) of gut, which ensures intestinal normal development. , and can induce histone acylation modifications by butyrate to enhance the development and immune balance of gut. Herein, we summarizes the present scientific understanding of how dietary nutrients shape gut microbiota and further regulate intestinal mucosa functions via epigenetic modifications, which will shed light on manipulation of gut microbiota by dietary nutrients, for prevention or clinical treatment of intestinal diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408398.2020.1828813 | DOI Listing |
Gut Microbes
December 2025
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
IgA nephropathy (IgAN) is related to the balance of gut microbiota. However, it is unclear whether changes in the gut microbiota can cause IgAN or attenuate its progression. This study employed IgAN and human microbiota-associated (HMA)-IgAN models to investigate the impact of IgAN on gut microbiota alteration and the mechanisms by which gut microbiota might trigger IgAN.
View Article and Find Full Text PDFPLoS Biol
January 2025
Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina.
The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, life span, and stress resistance. In Caenorhabditis elegans, DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood.
View Article and Find Full Text PDFUnited European Gastroenterol J
January 2025
Department of Gastroenterology, CHU Liège, Liège, Belgium.
Background And Aims: Probe-based confocal endomicroscopy (pCLE) allows real-time microscopic visualization of the intestinal mucosa surface layers. Despite remission achieved through anti-tumor necrosis factor or vedolizumab therapy, anomalies in the intestinal epithelial barrier are observed in inflammatory bowel disease (IBD) patients. Our study aimed to assess these abnormalities in non-IBD individuals and compare them with IBD patients in endoscopic remission to identify the associated factors.
View Article and Find Full Text PDFJ Transl Med
January 2025
Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
Background: The small intestine harbors a rich array of intestinal intraepithelial lymphocytes (IELs) that interact with structural cells to collectively sustain gut immune homeostasis. Dysregulation of gut immune homeostasis was implicated in the pathogenesis of multiple autoimmune diseases, however, whether this homeostasis is disrupted in a lupus autoimmune background remains unclear.
Methods: We performed single-cell RNA sequencing (scRNA-seq) analyses to elucidate immune and structural milieu in the intestinal epithelium of MRL/Lpr lupus mice (Lpr mice) and MRL/Mpj control mice (Mpj mice).
J Ethnopharmacol
January 2025
School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China. Electronic address:
Ethnopharmacological Relevance: As digestive health issues rise and interest in natural therapies grows, traditional herbs like Cassia Seed are gaining attention for their antioxidant, laxative, and digestive benefits.
Aim Of The Study: This study aimed to optimize the fermentation conditions of Cassia seed using microbial technology to enhance the content of anthraquinone compounds, thereby augmenting its pharmacological effects, particularly in promoting intestinal peristalsis and alleviating constipation.
Materials And Methods: Fermentation of Cassia Seed was conducted under controlled microbial conditions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!