III-V semiconductor nanowires (NWs), such as those based on GaAs, are attractive for advanced optoelectronic and nanophotonic applications. The addition of Bi into GaAs offers a new avenue to enhance the near-infrared device performance and to add new functionalities, by utilizing the remarkable valence band structure and the giant bowing in the bandgap energy. Here, we report that alloying with Bi also induces the formation of optically-active self-assembled nanodisks caused by Bi segregation. They are located in the vicinity to the 112 corners of the GaAsBi shell and are restricted to twin planes. Furthermore, the Bi composition in the disks is found to correlate with their lateral thickness. The higher Bi composition in the disks with respect to the surrounding matrix provides a strong confinement for excitons along the NW axis, giving rise to narrow emission lines (<450 μeV) with the predominant emission polarization orthogonal to the NW axis. Our findings, therefore, open a new possibility to fabricate self-assembled quantum structures by combining advantages of dilute bismide alloys and lattice engineering in nanowires.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0nr05488g | DOI Listing |
The self-assembly of miktoarm star polymers μ-A (B(D)) C in a neutral solution and the pH-responsive behaviors of vesicles and spherical micelles in an acidic solution have been investigated by DPD simulation. The results show that the self-assembled morphologies can be regulated by the lengths of pH-responsive arm B and hydrophilic arm C, leading to the formation of vesicles, discoidal micelles, and spherical micelles in a neutral solution. The dynamic evolution pathways of vesicles and spherical micelles are categorized into three stages: nucleation, coalescence, and growth.
View Article and Find Full Text PDFAdv Mater
September 2024
Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
Photonic crystals, characterized by their periodic structures, have been extensively studied for their ability to manipulate light. Typically, the development of 2D photonic crystals requires either sophisticated equipment or precise orientation of spherical nanoparticles. However, liquid-crystalline (LC) materials offer a promising alternative, facilitating the formation of periodic structures without the need for complex manipulation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2023
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
Photonic applications of up-conversion luminescence (UCL) suffer from poor external quantum yield owing to a low absorption cross-section of UCL nanoparticles (UCNPs) doped with lanthanide ions. In this regard, plasmonic nanostructures have been proposed for enhancing UCL intensity through strong electromagnetic local-field enhancement; however, their intrinsic ohmic loss opens additional nonradiative decay channels. Herein, we demonstrate that dielectric metasurfaces can overcome this disadvantage.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2023
Department of Physics, College of Science, King Khalid University, P.O. Box 9004, Abha 61421, Saudi Arabia.
Plasmonic nanocomposites demonstrate unique properties due to the plasmonic effects, especially those with graphene within their structures, thereby paving the way to various promising applications. In this paper, we investigate the linear properties of the graphene-nanodisks--quantum-dots hybrid plasmonic systems in the near-infrared region of the electromagnetic spectrum by numerically solving the linear susceptibility of the weak probe field at a steady state. Utilising the density matrix method under the weak probe field approximation, we derive the equations of motion for the density matrix elements using the dipole--dipole-interaction Hamiltonian under the rotating wave approximation, where the quantum dot is modelled as a three-level atomic system of Λ configuration interacting with two externally applied fields, a probe field, and a robust control field.
View Article and Find Full Text PDFNanoscale
January 2023
Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
Precise control of size and dimension is the key to constructing complex hierarchical nanostructures, particularly multi-dimensional hybrid nanoassemblies. Herein, we conducted Brownian dynamics simulations to examine the seeded-growth of rod-coil block copolymer assemblies and discovered that 2D-1D (disk-cylinder) hybrid micelles could be formed liquid-crystallization-driven self-assembly (LCDSA). 2D nanodisk micelles with smectic-like LC cores served as seeds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!