The oncogenic property of the Src homology phosphotyrosine phosphatase 2 (SHP2) is well-known, but developing specific inhibitors has been very difficult. Based on our previous reports that showed the importance of acidic residues surrounding SHP2 substrate phosphotyrosines for specific recognition, we have rationally designed and chemically synthesized a small-molecule SHP2 inhibitor named 4,4'-(4'-carboxy)-4-nonyloxy-[1,1'-biphenyl]-3,5-diyl)dibutanoic acid (CNBDA). Molecular modeling predicted that CNBDA packs well into the SHP2 active site and makes extended interactions primarily with positively charged and polar amino acids surrounding the active site. PTPase assays showed that CNBDA inhibits SHP2 with an IC of 5 μM. However, the IC of CNBDA toward SHP1, the close structural homologue of SHP2, was 125 μM, suggesting an approximately 25-fold effectiveness against SHP2 than SHP1. Because SHP2 is known for its positive role in breast cancer (BC) cell biology, we tested the effect of SHP2 inhibition with CNBDA in HER2-positive BC cells. Treatment with CNBDA suppressed cell proliferation in 2D culture, anchorage-independent growth in soft agar, and mammosphere (tumorisphere) formation in suspension cultures in a concentration-dependent manner. Furthermore, CNBDA inhibited EGF-induced signaling and expression of HER2 by inhibiting the PTPase activity of SHP2 in BC cells. These findings suggest that CNBDA is a promising anti-SHP2 lead compound with anti-BC cell effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7542598 | PMC |
http://dx.doi.org/10.1021/acsomega.0c02746 | DOI Listing |
J Biol Chem
January 2025
Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China. Electronic address:
Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) plays a dual role in cancer initiation and progression. Identifying signals that modulate the function of SHP2 can improve current therapeutic approaches for IFN-α/β in HCC. We showed that cAMP-dependent protein kinase A (PKA) suppresses IFN-α/β-induced JAK/STAT signaling by increasing the phosphatase activity of SHP2, promoting the dissociation of SHP2 from the receptor for activated C-kinase 1 (RACK1) and binding to STAT1.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
To investigate how PD-L1 monoclonal antibodies (mAbs) affect the left ventricular function in mice with myocardial infarction (MI) and through what mechanisms they exert their effects. In vivo experiments were conducted using 27 female BALB/c mice, which were divided equally into 3 groups. Cardiac function was assessed by ultrasound.
View Article and Find Full Text PDFUnlabelled: SHP1 (PTPN6) and SHP2 (PTPN11) are closely related protein-tyrosine phosphatases (PTPs), which are autoinhibited until their SH2 domains bind paired tyrosine-phosphorylated immunoreceptor tyrosine-based inhibitory/switch motifs (ITIMs/ITSMs). These PTPs bind overlapping sets of ITIM/ITSM-bearing proteins, suggesting that they might have some redundant functions. By studying T cell-specific single and double knockout mice, we found that SHP1 and SHP2 redundantly restrain naïve T cell differentiation to effector and central memory phenotypes, with SHP1 playing the dominant role.
View Article and Find Full Text PDFMolecules
December 2024
School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, China.
The src-homology 2 domain-containing phosphatase 2 (SHP2) is a human cytoplasmic protein tyrosine phosphatase that plays a crucial role in cellular signal transduction. Aberrant activation and mutations of SHP2 are associated with tumor growth and immune suppression, thus making it a potential target for cancer therapy. Initially, researchers sought to develop inhibitors targeting SHP2's catalytic site (protein tyrosine phosphatase domain, PTP).
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, PR China.
The incidence of neurodegenerative diseases (NDs) has increased recently. However, most of the current governance strategies are palliative and lack effective therapeutic drugs. Therefore, elucidating the pathological mechanism of NDs is the key to the development of targeted drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!