Appropriate citation of placenta cell lines 3A(tPA-30-1) and 3A-sub E [post crisis of 3A(tPA-30-1)] in medical literature.

Heliyon

Department of Obstetrics, Gynecology, and Women's Health, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, Hawaii, USA.

Published: October 2020

Introduction: To determine how often placenta cell lines 3A (tPA-30-1) and 3A-sub E [post crisis of 3A (tPA-30-1)] are appropriately cited, or identified, as "term"-gestation placental cell lines in medical literature.

Methods: We performed a literature search on two databases, PubMed and One Search, using the terms "3A (tPA-30-1)," "3Asub-E," "3AsubE," "tPA-30-1," "tPA30-1," and "3A AND (placenta OR placental OR trophoblast OR trophoblastic) AND (cell OR line OR cell line)." Of the 218 citations retrieved, 181 were excluded due to duplication, article content irrelevance or lack of access to a full manuscript. The remaining 37 citations were thoroughly reviewed for 1)the presence of a full citation as designated by the supplier, and 2)the identification of the placental lines as "term."

Results: Of the 37 eligible citations included in the study, five demonstrated complete identifications of the placental cell lines of interest, while 32 demonstrated partial identifications that failed to match the designations provided by the manufacturer. Furthermore, of the 37 citations, eight accurately identified the cell lines as "term," while 27 lacked any description of gestational age, and two incorrectly identified them as "first trimester" cell lines. Overall, only three citations contained both a full citation and correct identification as a "term" placenta cell line.

Discussion: Only 5 of the 37 (13.5%) publications demonstrated a complete citation and only 8 publications accurately identified the gestational age of the placenta cell line as "term". Such findings confirm the need for a representative set of standards for the documentation of cell lines to improve the quality of publications in the scientific community.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536373PMC
http://dx.doi.org/10.1016/j.heliyon.2020.e04759DOI Listing

Publication Analysis

Top Keywords

cell lines
28
placenta cell
16
cell
11
lines
8
3a-sub [post
8
[post crisis
8
placental cell
8
full citation
8
demonstrated complete
8
accurately identified
8

Similar Publications

Prostate cancer antigen 3 (PCA3) has emerged as a critical biomarker for the early detection of prostate cancer, complementing the traditional prostate-specific antigen (PSA) testing. This research presents a novel resistive sensor based on reduced graphene oxide (RGO) functionalized with glutaraldehyde (GA)/complementary single-stranded DNA (ss-DNA) for the detection of the PCA3 RNA. The device was meticulously characterized at each fabrication step to confirm the successful integration of the various layers on the sensor device, utilizing atomic force microscopy (AFM) which confirmed the increase in the thickness of the sensor from ∼1.

View Article and Find Full Text PDF

Background: The prognosis for non-small cell lung cancer (NSCLC) patients treated with standard platinum-based chemotherapy was suboptimal, with safety concerns. Following encouraging results from a preliminary phase I study, this phase II trial investigated the efficacy and safety of first-line sintilimab and anlotinib in metastatic NSCLC.

Methods: In this open-label, randomized controlled trial (NCT04124731), metastatic NSCLC without epithelial growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), or proto-oncogene tyrosine-protein kinase ROS (ROS1) mutations, and previous treatments for metastatic disease were enrolled.

View Article and Find Full Text PDF

Aim: Breast cancer (BC) is the most frequently diagnosed malignancy worldwide, necessitating continued research into its molecular mechanisms. Circular RNAs (circRNAs) are increasingly recognized for their role in various cancers, including BC. This study explores the role of circRNA kinesin family member 4A (circKIF4A) in BC progression and its underlying molecular mechanisms.

View Article and Find Full Text PDF

Novel Cystic Fibrosis Ferret Model Enables Visualization of CFTR Expression Cells and Genetic CFTR Reactivation.

Hum Gene Ther

January 2025

Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.

Cystic fibrosis (CF) is caused by mutations in the (). While gene therapy holds promise as a cure, the cell-type-specific heterogeneity of expression in the lung presents significant challenges. Current CF ferret models closely replicate the human disease phenotype but have limitations in studying functional complementation through cell-type-specific CFTR restoration.

View Article and Find Full Text PDF

Heteronemin suppresses EGF‑induced proliferation through the PI3K/PD‑L1 signaling pathways in cholangiocarcinoma.

Oncol Rep

March 2025

Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C.

Epidermal growth factor (EGF) binds with its surface receptor to stimulate gene expression and cancer cell proliferation. EGF stimulates cancer cell growth via phosphoinositide 3‑kinase (PI3K) and programmed cell death ligand 1 (PD‑L1) pathways. As an integrin αvβ3 antagonist, heteronemin exhibits potent cytotoxic effects against cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!