Significantly more carbon (C) is stored in deep soil than in shallow horizons, yet how the decomposition of deep soil organic C (SOC) will respond to rising temperature remains unexplored on large scales, leading to considerable uncertainties to predictions of the magnitude and direction of C-cycle feedbacks to climate change. Herein, short-term temperature sensitivity of SOC decomposition (expressed as ) from six depths within the top 1 m soil from 90 upland forest sites (540 soil samples) across China is reported. Results show that significantly increases with soil depth, suggesting that deep SOC is more vulnerable to loss with rising temperature in comparison to shallow SOC. Climate is the primary regulator of shallow soil but its relative influence declines with depth; in contrast, soil C quality has a minor influence on in shallow soil but increases its influence with depth. When considering the depth-dependent variations, results further show that using the thermal response of shallow soil layer for the whole soil profile, as is usually done in model predictions, would significantly underestimate soil C-climate feedbacks. The results highlight that Earth system models need to consider multilayer soil C dynamics and their controls to improve prediction accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539220PMC
http://dx.doi.org/10.1002/advs.202001242DOI Listing

Publication Analysis

Top Keywords

soil
13
rising temperature
12
deep soil
12
shallow soil
12
shallow
5
temperature trigger
4
deep
4
trigger deep
4
soil carbon
4
carbon loss
4

Similar Publications

Current Status of Porcine Reproductive and Respiratory Syndrome Vaccines.

Vaccines (Basel)

December 2024

State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China.

Porcine reproductive and respiratory syndrome (PRRS), characterized by reproductive failures in breeding pigs and respiratory diseases in growing pigs, is a widespread and challenging disease. The agent, PRRSV, is a single-strand RNA virus that is undergoing continuous mutation and evolution, resulting in the global spread of multiple strains with different genetic characteristics and variable antigens. There are currently no effective measures to eradicate PRRS, and vaccination is crucial for controlling the disease.

View Article and Find Full Text PDF

Calibration and Performance Evaluation of Cost-Effective Capacitive Moisture Sensor in Slope Model Experiments.

Sensors (Basel)

December 2024

Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan.

Understanding the factors that contribute to slope failures, such as soil saturation, is essential for mitigating rainfall-induced landslides. Cost-effective capacitive soil moisture sensors have the potential to be widely implemented across multiple sites for landslide early warning systems. However, these sensors need to be calibrated for specific applications to ensure high accuracy in readings.

View Article and Find Full Text PDF

Weather and soil water dictate farm operations such as irrigation scheduling. Low-cost and open-source agricultural monitoring stations are an emerging alternative to commercially available monitoring stations because they are often built from components using open-source, do-it-yourself (DIY) platforms and technologies. For irrigation management in an experimental vineyard located in Quiroga (Lugo, Spain), we faced the challenge of installing a low-cost environmental and soil parameter monitoring station composed of several nodes measuring air temperature and relative humidity, soil temperature, soil matric potential, and soil water content.

View Article and Find Full Text PDF

Interferometric radiometers operating at L-band, such as ESA's SMOS mission, enable crucial Earth observations providing high-resolution measurements of soil moisture, ocean salinity, and other geophysical parameters. However, the increasing electromagnetic spectrum utilization has led to significant Radio Frequency Interference (RFI) challenges, particularly critical given the sensors' fine temperature resolution requirements of less than 1 K. This work presents the hardware implementation of an advanced RFI detection and mitigation algorithm specifically designed for interferometric radiometers, targeting future L-band missions.

View Article and Find Full Text PDF

Research on the Mechanical Properties of EPS Lightweight Soil Mixed with Fly Ash.

Polymers (Basel)

December 2024

School of Civil Engineering, Architectural and Environment, Hubei University of Technology, Wuhan 430068, China.

Expanded polystyrene (EPS) bead-lightweight soil composites are a new type of artificial geotechnical material with low density and high strength. We applied EPS bead-lightweight soil in this project, replacing partial cement with fly ash to reduce construction costs. EPS beads were used as a lightweight material and cement and fly ash as curing agents in the raw soil were used to make EPS lightweight soil mixed with fly ash.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!