The intriguing carrier dynamics in graphene heterojunctions have stimulated great interest in modulating the optoelectronic features to realize high-performance photodetectors. However, for most phototransistors, the photoresponse characteristics are modulated with an electrical gate or a static field. In this paper, we demonstrate a graphene/C/pentacene vertical phototransistor to tune both the photoresponse time and photocurrent based on light modulation. By exploiting the power-dependent multiple states of the photocurrent, remarkable logical photocurrent switching under infrared light modulation occurs in a thick C layer (11 nm) device, which implies competition of the photogenerated carriers between graphene/C and C/pentacene. Meanwhile, we observe a complete positive-negative alternating process under continuous 405 nm irradiation. Furthermore, infrared light modulation of a thin C (5 nm) device results in a photoresponsivity improvement from 3425 A/W up to 7673 A/W, and we clearly probe the primary reason for the distinct modulation results between the 5 and 11 nm C devices. In addition, the tuneable bandwidth of the infrared response from 10 to 3 × 10 Hz under visible light modulation is explored. Such distinct types of optical modulation phenomena and logical photocurrent inversion characteristics pave the way for future tuneable logical photocurrent switching devices and high-performance phototransistors with vertical graphene heterojunction structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7509774PMC
http://dx.doi.org/10.1038/s41377-020-00406-4DOI Listing

Publication Analysis

Top Keywords

light modulation
16
logical photocurrent
12
photocurrent switching
8
infrared light
8
modulation
6
photocurrent
5
light-modulated vertical
4
vertical heterojunction
4
heterojunction phototransistors
4
phototransistors distinct
4

Similar Publications

Background: Breast cancer (BC) is a global challenge that affects a large portion of individuals, especially women. It has been suggested that microparticles (MPs) can be used as a diagnostic, prognostic, or therapeutic biomarker in various diseases. Moreover, MPs are known to elevate in cancer cases.

View Article and Find Full Text PDF

The incorporation of Sb ions into all-inorganic halide lead-free perovskites bestows them with remarkable photoluminescence characteristics, including an extensive color tuning range, elevated photoluminescence quantum yield (PLQY), and reversible color transitions, which hold significant promise for applications in light-emitting diodes, anti-counterfeiting encryption technologies, and photodetectors. Sb ions not only create new optical absorption channels but also can be integrated into these materials as activators or sensitizers to modulate the bandgap and band structure. This review focuses on the optical properties of Sb ion-doped lead-free halide perovskites while examining potential energy transfer pathways across various doping systems.

View Article and Find Full Text PDF

New drugs for acute kidney injury.

J Intensive Med

January 2025

Department of Anesthesia and Perioperative Care, Division of Critical Care Medicine, UCSF, San Francisco, CA, USA.

Acute kidney injury (AKI) presents a significant challenge in the management of critically ill patients, as it is associated with increased mortality, prolonged hospital stays, and increased healthcare costs. In certain conditions, such as during sepsis or after cardiac surgery, AKI is one of the most frequent complications, affecting 30%-50% of patients. Over time, even after the resolution of AKI, it can evolve into chronic kidney disease, a leading global cause of mortality, and cardiovascular complications.

View Article and Find Full Text PDF

Pan-Cancer Analysis of the Prognostic and Immunotherapeutic Value of PDGFB.

Immunotargets Ther

January 2025

Institute of Integration of Traditional Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, People's Republic of China.

Introduction: Cancer is a widespread epidemic that affects millions of individuals across the world. Identifying novel cancer targets is crucial to developing more effective cancer treatments. Platelet-derived growth factor-B (PDGFB) plays a critical role in various tumor processes, including angiogenesis and lymphatic metastasis.

View Article and Find Full Text PDF

Introduction: Hyperthermia is an established adjunct in multimodal cancer treatments, with mechanisms including cell death, immune modulation, and vascular changes. Traditional hyperthermia applications are resource-intensive and often associated with patient morbidity, limiting their clinical accessibility. Gold nanorods (GNRs) offer a precise, minimally invasive alternative by leveraging near-infrared (NIR) light to deliver targeted hyperthermia therapy (THT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!