The 2019 novel coronavirus (2019-nCoV) is still spreading rapidly around the world, and one cause of lethality for patients infected with 2019-nCoV is acute respiratory distress syndrome (ARDS). ARDS is a severe syndrome of acute lung injury (ALI) that is predominantly triggered by inflammation and results in a sudden loss of, or damage to, kidney function. Emerging studies reveal that multiple transcription factor-associated signaling pathways are activated in the pathology of ALI/ARDS. Of these pathways, the activation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), AP-1 (activator protein 1), IRFs (interferon regulatory factors), STATs (signal transducer and activator of transcription), Wnt/β-catenin-TCF/LEF (T-cell factor/lymphoid enhancer-binding factor), and CtBP2 (C-Terminal binding protein 2)-associated transcriptional complex contributes to ALI/ARDS pathology through diverse mechanisms, such as inducing proinflammatory cytokine levels and mediating macrophage polarization. In this review, we present an updated summary of the mechanisms underlying these signaling activations and regulations, as well as their contribution to the pathogenesis of ALI/ARDS. We aim to develop a better understanding of how ALI/ARDS occurs and improve ALI/ARDS therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540143PMC

Publication Analysis

Top Keywords

acute lung
8
lung injury
8
acute respiratory
8
respiratory distress
8
distress syndrome
8
ali/ards
5
transcription factor-mediated
4
factor-mediated signaling
4
signaling pathways'
4
pathways' contribution
4

Similar Publications

Background: is a differentially expressed gene (DEG) between M1 and M2 macrophages. This study explained why it causes opposite effects in different circumstances.

Methods: Gene expression profiles of various cell subsets were compared by mining a public database.

View Article and Find Full Text PDF

Background: Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have shown benefits in improving cardiovascular (CV) outcomes in patients with heart failure (HF) and may mitigate symptom progression in myocardial infarction (MI). However, their effectiveness in patients with type 2 diabetes and MI undergoing percutaneous coronary intervention (PCI) is unclear.

Methods: To identify eligible studies, a comprehensive search of electronic databases, PubMed, Cochrane Library, Scopus and Embase, was conducted from inception until May 2024.

View Article and Find Full Text PDF

Papillary fibroelastomas (PFEs) are rare, benign, primary cardiac tumors, typically found on the valve surfaces and more commonly on the left side of the heart, with occurrences in the right atrium even rarer. In this case, a highly mobile tumor was incidentally detected in the right atrium of an 83-year-old woman with advanced right lung cancer during preoperative transthoracic echocardiography and magnetic resonance imaging. Although the patient was asymptomatic and of advanced age, the tumor's high mobility warranted resection.

View Article and Find Full Text PDF

Pulmonary fibrosis significantly contributes to the pathogenesis of acute respiratory distress syndrome (ARDS), markedly increasing patient mortality. Despite the established anti-fibrotic effects of mesenchymal stem cells (MSCs), numerous challenges hinder their clinical application. A recent study demonstrated that microvesicles (MVs) from MSCs (MSC-MVs) could attenuate ARDS-related pulmonary fibrosis and enhance lung function hepatocyte growth factor mRNA transcription.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) is a clinical syndrome of acute hypoxic respiratory failure caused by diffuse lung inflammation and edema. ARDS can be precipitated by intrapulmonary factors or extrapulmonary factors, which can lead to severe hypoxemia. Patients suffering from ARDS have high mortality rates, including a 28-day mortality rate of 34.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!