Blockade of CXCR2 suppresses proinflammatory activities of neutrophils in ulcerative colitis.

Am J Transl Res

Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University Jining 272000, Shandong, P. R. China.

Published: September 2020

Ulcerative colitis (UC) is one chronically remittent and progressive inflammatory disorder. Chemokine receptor CXCR2 is reported to be involved in the pathogenesis of several inflammatory diseases. However, how CXCR2 modulate mucosal inflammation in UC is still obscure. In this study, CXCR2 expression was determined in inflamed mucosa and peripheral blood cells from patients with UC by qRT-PCR. Neutrophils isolated from peripheral blood were pretreated with CXCR2 inhibitor (SB225002), and proinflammatory mediators were examined by qRT-PCR, ELISA and IF. The migratory capacity of neutrophils after SB225002 treatment was examined by using Transwell plate. Furthermore, SB225002 was administrated daily in DSS-induced colitis mice. We found that CXCR2 expression was significantly increased in colonic mucosal tissues and peripheral blood cells from patients with active UC. Besides, CXCR2 was highly expressed in neutrophils, and was positively correlated with disease activity. Inhibition of CXCR2 in neutrophils decreased the production of proinflammatory mediators, such as reactive oxygen species (ROS), MPO, S100a8, S100a9, TNF-α, IL-1β, IL-8 and IL-6, and the migratory capacity of neutrophils was markedly impaired after SB225002 treatment. Moreover, blockade of CXCR2 with SB225002 could markedly ameliorate DSS-induced colitis in mice. In summary, CXCR2 plays a critical role in the pathogenesis of UC through modulating immune responses of neutrophils. Blockade of CXCR2 may serve as a new therapeutic approach for treatment of UC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540107PMC

Publication Analysis

Top Keywords

blockade cxcr2
12
peripheral blood
12
cxcr2
10
ulcerative colitis
8
cxcr2 expression
8
blood cells
8
cells patients
8
proinflammatory mediators
8
migratory capacity
8
capacity neutrophils
8

Similar Publications

Integrated multi-omics profiling reveals neutrophil extracellular traps potentiate Aortic dissection progression.

Nat Commun

December 2024

Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.

Adverse aortic remodeling increases the risk of aorta-related adverse events (AAEs) after thoracic endovascular aortic repair (TEVAR) and affects the overall prognosis of aortic dissection (AD). It is imperative to delve into the exploration of prognostic indicators to streamline the identification of individuals at elevated risk for postoperative AAEs, and therapeutic targets to optimize the efficacy of TEVAR for patients with AD. Here, we perform proteomic and single-cell transcriptomic analyses of peripheral blood and aortic lesions, respectively, from patients with AD and healthy subjects.

View Article and Find Full Text PDF

Minimizing central nervous system (CNS) injury from preterm birth depends upon understanding the critical pathways that underlie essential neurodevelopmental and CNS pathophysiology. Signaling by chemokine (C-X-C motif) ligand 1 (CXCL1) through its cognate receptor, CXCR2 [(C-X-C motif) receptor 2] is essential for neurodevelopment. Increased CXCR2 signaling, however, is implicated in a variety of uterine and neuropathologies, and their role in the CNS injury associated with perinatal brain injury is poorly defined.

View Article and Find Full Text PDF

Background: Relapsed head and neck squamous cell carcinoma (HNSCC) unrelated to HPV infection carries a poor prognosis. Novel approaches are needed to improve the clinical outcome and prolong survival in this patient population which has poor long-term responses to immune checkpoint blockade. This study evaluated the chemokine receptors CXCR1 and CXCR2 as potential novel targets for the treatment of HPV-negative HNSCC.

View Article and Find Full Text PDF

Targeting the immune privilege of tumor-initiating cells to enhance cancer immunotherapy.

Cancer Cell

December 2024

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:

Tumor-initiating cells (TICs) possess the ability to evade anti-tumor immunity, potentially explaining many failures of cancer immunotherapy. Here, we identify CD49f as a prominent marker for discerning TICs in hepatocellular carcinoma (HCC), outperforming other commonly used TIC markers. CD49f-high TICs specifically recruit tumor-promoting neutrophils via the CXCL2-CXCR2 axis and create an immunosuppressive milieu in the tumor microenvironment (TME).

View Article and Find Full Text PDF

The family of pro-inflammatory and pro-angiogenic chemokines including Interleukin-8 (IL-8, aka CXCL8) and its homologues (CXCL1,2,3,5,6, and 7) exhibit promiscuous binding and activation of several G-protein-coupled receptors (i.e., CXCR2, CXCR1, and the atypical chemokine receptor (ACKR1)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!